MinGPU: a minimum GPU library for computer vision

Pavel Babenko1, Mubarak Shah1
1Computer Vision Lab, School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adelson, E.H., Anderson, C.H., Bergen, J.R., Burt, P.J., Ogden, J.M.: Pyramid methods in image processing. RCA Eng. 29(6), 33–41 (1984)

Buck, I., Foley, T., Horn, D., et al.: Brook for GPUs: stream computing on graphics hardware. ACM. Trans. Graph. 23(3), 777–786 (2004)

BrookGPU source code: http://brook.sourceforge.net

Colantoni, P., Boukala, N., Da Rugna, J.: Fast and accurate color image processing using 3D Graphics Cards. In: Vision, Modeling and Visualization Conference (VMV) (2003)

Computer Vision on the GPU: http://openvidia.sourceforge.net/papers.shtml .

Cg Toolkit User’s Manual. (2005)

Cg Toolkit: http://developer.nvidia.com/object/cg_toolkit.html

Fung, J.: GPU Gems 2, chapter Computer Vision on the GPU. Addison Wesley, pp. 649–666 (2005)

Fung, J., Mann, S., Aimone, C.: OpenVidia: parallel GPU computer vision. Proceedings of ACM Multimedia, pp. 849–852 (2005)

Göddeke, D.: Online tutorial on GPGPU. http://www.mathematik.uni-dortmund.de/~goeddeke/gpgpu/tutorial.html

Govindaraju, N.K., Manocha, D.: Cache-efficient numerical algorithms using graphics hardware. UNC Technical Report (2007)

Govindaraju, N.K., Larsen, S., Gray, J., Manocha, D.: A memory model for scientific algorithms on graphics processors. UNC Technical Report (2006)

Han, Y., Wagner, R.A.: An efficient and fast parallel-connected component algorithm. J. ACM. 37 (3), 626–642 (1990)

Heymann, S., Müller, K., Smolic, A., Fröhlich, B., Wiegand, T.: SIFT implementation and optimization for general-purpose GPU. In: International Conference on Computer Graphics, Visualization and Computer Vision (WSCG) (2007)

Khan, S.M., Yan, P., Shah, M.: A homographic framework for the fusion of multi-view Silhouettes. In: International Conference on Computer Vision, Rio de Janeiro, Brazil (2007)

Labatut, P., Keriven, R., Pons, J-P.: Fast level set multi-view stereo on graphics hardware. In: 3rd International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT), pp. 774–781 (2006)

MinGPU source and technical report (case-sensitive): www.cs.ucf.edu\~vision\MinGPU

Moreland, K., Angel, E.: The FFT on GPU. SIGGRAPH, pp. 112–119 (2003)

NVIDIA GeForce 8800 GPU Architecture Overview. nVidia Technical brief (2006). www.nvidia.com/object/IO_37100.html

NVIDIA CUDA Programming Guide 1.1. http://www.nvidia.com/object/cuda_home.html .

OpenVIDIA GPU computer vision library. http://openvidia.sourceforge.net

Ohmer, J., Maire, F., Brown, R.: Implementation of Kernel methods on the GPU. In: Proceedings 8th International Conference on Digital Image Computing: Techniques and Applications (DICTA). pp. 543–550 (2005)

RapidMind development platform and documentation, http://www.rapidmind.net/ .

Rumpf, M., Strzodka, R.: Level set segmentation in graphics hardware. In: Proc. IEEE Int. Conf. Image Process. 3, 1103–1106 (2001)

Sh GPU metaprogramming library: http://www.libsh.org/

Yang, R., Pollefeys, M.: Multi-resolution real-time stereo on commodity graphics hardware. IEEE Comp. Vis. Pattern Recog. 211–218 (2003)

Yang, R., Welch, G.: Fast image segmentation and smoothing using commodity graphics hardware. J. Graph. Tools 7(4), 91–100 (2002)