Min-max and min-min stackelberg strategies with closed-loop information structure

Springer Science and Business Media LLC - Tập 17 Số 3 - Trang 387-425 - 2011
Marc Jungers1, Emmanuel Trélat2, Hisham Abou-Kandil3
1CRAN UMR CNRS 7039, 2 Avenue de la foret de HAYE, F-54516, Vandoeuvre cedex, France
2Universite d’Orleans, UFR Sciences Federation Denis Poisson Mathematiques, Laboratoire MAPMO, UMR 6628 Route de Chartres, BP 6759, F-45067, Orleans Cedex 2, France
3SATIE ENS CACHAN, 61 Avenue du President Wilson, F-94235, Cachan Cedex, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

H. Abou-Kandil and P. Bertrand, Analytical solution for an open-loop Stackelberg game. IEEE Trans. Automat. Control AC-30 (1985), 1222–1224.

H. Abou-Kandil, G. Freiling, V. Ionescu, and G. Jank, Matrix Riccati equations in control and systems theory. Birkhäuser (2003).

A. Aboussoror and P. Loridan, Strong–weak Stackelberg problems in finite-dimensional spaces. Serdica Math. J. 21 (1995), 151–170.

_____, Existence of solutions of two-level optimization problems with nonunique lower-level solutions. J. Math. Anal. Appl. 254 (2001), 348–357.

A. Agrachev and J.-P. Gauthier, On subanalyticity of Carnot–Carathéodory distances. Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001), 359–382.

A. Agrachev and Yu. Sachkov, Control theory from the geometric viewpoint. Encycl. Math. Sci. 87, Springer-Verlag, Berlin–New York (2004).

A. Agrachev and A. Sarychev, Abnormal sub-Riemannian geodesics: Morse index and rigidity. Ann. Inst. H. Poincaré 13 (1996), 635–690.

R. Axelrod, The evolution of cooperation. New York Basic Books (1984).

A. Bagchi, Stackelberg differential games in economic models. Lect. Notes Control Inform. Sci. Springer-Verlag (1984).

T. Ba,sar and A. Haurie, Feedback equilibria in differential games with structural and modal uncertainties. JAE Press Inc. Connecticut (1984).

T. Başar and G. J. Olsder, Team-optimal closed-loop Stackelberg strategies in hierarchical control problems. Automatica 16 (1980), 409–414.

_____, Dynamic noncooperative game theory. SIAM (1995).

T. Başar and H. Selbuz, Closed-loop Stackelberg strategies with applications in the optimal control of multilevel systems. IEEE Trans. Automat. Control AC-24 (1979), 166–179.

T. Ba,sar and R. Srikant, A Stackelberg network game with a large number of followers. J. Optim. Theory Appl. 115 (2002), 479–490.

B. Bonnard and M. Chyba, The role of singular trajectories in control theory. Math. Appl. 40, Springer-Verlag (2003).

B. Bonnard, L. Faubourg, and E. Trélat, Mécanique céleste et contrôle de systèèmes spatiaux. Math. Appl. 51, Springer-Verlag (2006).

M. Breton, A. Alj, and A. Haurie, Sequential Stackelberg equilibria in two-person games. J. Optim. Theory Appl. 59 (1988), 71–97.

A. Buratto and G. Zaccour, Coordination of advertising strategies in a fashion licensing contract. J. Optim. Theory Appl. 142 (2009), 31–53.

L. Cesari, Optimization. Theory and applications. Problems with ordinary differential equations. Springer-Verlag, New York (1983).

B. Chen and P.-A. Zadrozny, An anticipative feedback solution for the infinite-horizon, linear-quadratic, dynamic, Stackelberg game. J. Econ. Dynam. Control, 26 (2002), 1397–1416.

C. I. Chen and J. B. Cruz, Stackelberg solution for two-person games with biased information patterns. IEEE Trans. Automat. Control AC-17 (1972), 791–797.

Y. Chitour, F. Jean, and E. Trélat, Propiétés génériques des trajectoires singulières. C. R. Math. Acad. Sci. Paris 337 (2003), 49–52.

______, Genericity results for singular curves. J. Differ. Geom. 73 (2006), 45–73.

______, Singular trajectories of control-affine systems. SIAM J. Control Optim. 47 (2008), 1078–1095.

J. B. Cruz, Survey of Nash and Stackelberg equilibrium strategies in dynamic games. Ann. Econ. Social Measurement 4 (1975), 339–344.

S. Dempe, Essays and surveys in global optimization. Springer-Verlag (2005), pp. 165–193.

S. Dempe and N. Gadhi, Second-order optimality conditions for bilevel set optimization problems. J. Global Optim. 47 (2010), 233–245.

E. Dockner, S. Jorgensen, N. V. Long, and G. Sorger, Differential games in economics and management science. Cambridge Univ. Press (2000).

G. Freiling, G. Jank, and S. R. Lee, Existence and uniqueness of openloop stackelberg equilibria in linear-quadratic differential games. J. Optim. Theory Appl. 110 (2001), 515–544.

J. W. Friedman, A non-cooperative equilibrium for supergames. Review Econ. Stud. 38 (1971), 1–12.

X. He, A. Prasad, S. P. Sethi, and G. J. Gutierrez, A survey of Stackelberg differential game models in supply and marketing channels. J. Syst. Sci. Syst. Eng. 16 (2007), 385–413.

M. Jungers, Matrix block formulation of closed-loop memoryless Stackelberg strategy for discrete-time games. In: Proc. 47th IEEE Conf. on Decision and Control, Cancun, Mexico, December 2008.

M. Jungers and C. Oară, Anti-palindromic pencil formulation for openloop Stackelberg strategy in discrete-time. In: Proc. 19th Int. Symp. on Mathematical Theory of Networks and Systems (MTNS), Budapest, Hungary, July 2010, pp. 2265–2268.

S. Lasaulce, Y. Hayel, R. E. Azouzi, and M. Debbah, Introducing hierarchy in energy games. IEEE Trans. Wireless Commun. 8 (2009), 3833–3843.

E. Lee and L. Markus, Foundations of optimal control theory. Wiley, New York (1967).

G. Leitmann, On generalized Stackelberg strategies. J. Optim. Theory Appl. 26 (1978).

D. Limebeer, B. Anderson, and H. Hendel, A Nash game approach to mixed H 2/H ∞ control. IEEE Trans. Automat. Control 39 (1994), 69– 82.

P. Loridan and J. Morgan, A theoretical approximation scheme for Stackelberg problems. J. Optim. Theory Appl. 61 (1989), 95–110.

______, Weak via strong Stackelberg problem: New results. J. Global Optim. 8 (1996), 263–287.

L. Mallozzi and J. Morgan, Existence of a feedback equilibrium for twostage Stackelberg games. IEEE Trans. Automat. Control 42 (1997), 1612–1614.

J. Medanic, Closed-loop Stackelberg strategies in linear-quadratic problems. IEEE Trans. Automat. Control 23 (1978), 632–637.

P.-Y. Nie, Dynamic Stackelberg games under open-loop complete information. J. Franklin Inst., 342 (2005), 737–748.

P.-Y. Nie, L.-H. Chen, and M. Fukushima, Dynamic programming approach to discrete time dynamic feedback Stackelberg games with independent and dependent followers. Eur. J. Oper. Res. 169 (2006), 310–328.

P.-Y. Nie, M.-Y. Lai, and S.-J. Zhu, Dynamic feedback Stackelberg games with nonunique solutions. Nonlin. Anal. 69 (2008), 1904–1913.

A.-J. Novak, G. Feichtinger, and G. Leitmann, A differential game related to terrorism: Nash and Stackelberg strategies. J. Optim. Theory Appl., 144 (2010), 533–555.

G. P. Papavassilopoulos and J. B. Cruz, Nonclassical control problems and Stackelberg games. IEEE Trans. Automat. Control 24 (1979), 155–166.

M. Simaan and J. B. Cruz, Additional aspects of the Stackelberg strategy in nonzero-sum games. J. Optim. Theory Appl. 11 (1973), 613–626.

______, On the Stackelberg strategy in nonzero-sum games. J. Optim. Theory Appl. 11 (1973), 533–555.

A. W. Starr and Y. C. Ho, Further properties of nonzero-sum differential games. J. Optim. Theory Appl. 3 (1969), 207–219.

______, Nonzero-sum differential games. J. Optim. Theory Appl. 3 (1969), 184–206.

B. Tolwinski, Closed-loop Stackelberg solution to a multistage linearquadratic game. J. Optim. Theory Appl., 34 (1981), 485–501.

______, A Stackelberg solution of dynamic games. IEEE Trans. Automat. Control 28 (1983), 85–93.

E. Trélat, Asymptotics of accessibility sets along an abnormal trajectory. ESAIM Control Optim. Calc. Var. 6 (2001), 387–414.

______, Contrôle optimal: théorie et applications. Vuibert (2005).

L. N. Vicente and P. H. Calamai, Bilevel and multilevel programming: a bibliography review. J. Global Optim. 5 (1994), 291–306.

H. von Stackelberg, Marktform und Gleichgewicht. Springer-Verlag, Berlin (1934).

X. Yashan, Stackelberg equilibirums of open-loop differential games. In: Proc. 26th Chinese Control Conf., Zhangjiajie, Hunan, China, July 2007, pp. 446–450.

J. J. Ye, Optimal strategies for bilevel dynamic problems. SIAM J. Control Optim. 35 (1997), 512–531.

K. Zhou, J. C. Doyle, and K. Glover, Robust and optimal control. Prentice Hall, New Jersey (1996).