Mimicking the Human Physiology with Microphysiological Systems (MPS)

BioChip Journal - Tập 13 Số 2 - Trang 115-126 - 2019
Jong Hwan Sung1, Joonhoi Koo1, Michael L. Shuler2,3
1Department of Chemical Engineering, Hongik University, Seoul, Korea
2Hesperos, Inc., Orlando, USA
3Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Skardal, A., Shupe, T., Atala, A. Organoid-on-a-chip and body-on- a-chip systems for drug screening and disease modeling. Drug Discovery Today 21, 1399–1411 (2016).

Greek, R. & Menache, A. Systematic reviews of animal models: methodology versus epistemology. Int. J. Med. Sci. 10, 206–221 (2013).

Sung, J.H., Wang, Y.I., Narasimhan Sriram, N., Jackson, M., Long, C., Hickman, J.J. & Shuler, M.L. Recent advances in body-on-a-chip systems. Anal. Chem. 91, 330–351 (2019).

Isoherranen, N., Madabushi, R. & Huang, S.M. Emerging Role of Organ-on- a-Chip Technologies in Quantitative Clinical Pharmacology Evaluation. Clin. Transl. Sci. 12, 113–121 (2019).

Wang, Y.I., Carmona, C., Hickman, J.J. & Shuler, M.L. Multiorgan Microphysiological Systems for Drug Development: Strategies, Advances, and Challenges. Adv. Healthcare Mater. 7, 1701000 (2018).

Lee, S.H. & Sung, J.H. Organ-on-a-Chip Technology for Reproducing Multiorgan Physiology. Adv. Healthcare Mater. 7, 1700419 (2018).

Ishida, S. Organs-on-a-chip: Current applications and consideration points for in vitro ADME-Tox studies. Drug Metab. Pharmacokinet. 33, 49–54 (2018).

Sin, A., Chin, K.C., Jamil, M.F., Kostov, Y., Rao, G. & Shuler, M.L. The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors. Biotechnol. Prog. 20, 338–345 (2004).

Viravaidya, K., Sin, A. & Shuler, M.L. Development of a microscale cell culture analog to probe naphthalene toxicity. Biotechnol. Prog. 20, 316–323 (2004).

Sontheimer-Phelps, A., Hassell, B.A. & Ingber, D.E. Modelling cancer in microfluidic human organs-on-chips. Nat. Rev. Cancer 19, 65–81 (2019).

Mittal, R., Woo, F.W., Castro, C.S., Cohen, M.A., Karanxha, J., Mittal, J., Chhibber, T. & Jhaveri, V.M. Organ-on-chip models: Implications in drug discovery and clinical applications. J. Cell. Physiol. 234, 8352–8380 (2019).

Bauer, S., Huldt, C.W., Kanebratt, K.P., Durieux, I., Gunne, D., Andersson, S., Ewart, L., Haynes, W.G., Maschmeyer, I., Winter, A., Ämmälä, C., Marx, U. & Andersson, T.B. Functional coupling of human pancreatic islets and liver spheroids on-a-chip: Towards a novel human ex vivo type 2 diabetes model. Sci. Rep. 7, 14620 (2017).

Hübner, J., Raschke, M., Rütschle, I., Gräßle, S., Hasenberg, T., Schirrmann, K., Lorenz, A., Schnurre, S., Lauster, R., Maschmeyer, I., Steger-Hartmann, T. & Marx, U. Simultaneous evaluation of anti-EGFR-induced tumour and adverse skin effects in a microfluidic human 3D co-culture model. Sci. Rep. 8, 15010 (2018).

Esch, M.B., Ueno, H., Applegate, D.R. & Shuler, M.L. Modular, pumpless body-on-a-chip platform for the co-culture of GI tract epithelium and 3D primary liver tissue. Lab Chip 16, 2719–2729 (2016).

Frey, O., Misun, P.M., Fluri, D.A., Hengstler, J.G. & Hierlemann, A. Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis. Nat. Commun. 5, 4250 (2014).

Coppeta, J.R., Mescher, M.J., Isenberg, B.C., Spencer, A.J., Kim, E.S., Lever, A.R., Mulhern, T.J., Prantil-Baun, R., Comolli, J.C. & Borenstein, J.T. A portable and reconfigurable multi-organ platform for drug development with onboard microfluidic flow control. Lab Chip 17, 134–144 (2016).

Edington, Chen, W.L.K., Geishecker, E., Kassis, T., Soenksen, L.R., Bhushan, B.M., Freake, D., Kirschner, J., Maass, C., Tsamandouras, N., Valdez, J., Cook, C.D., Parent, T., Snyder, S., Yu, J., Suter, E., Shockley, M., Velazquez, J., Velazquez, J.J., Stockdale, L., Papps, J.P., Lee, I., Vann, N., Gamboa, M., LaBarge, M.E., Zhong, Z., Wang, X., Boyer, L.A., Lauffenburger, D.A., Carrier, R.L., Communal, C., Tannenbaum, S.R., Stokes, C.L., Hughes, D.J., Rohatgi, G., Trumper, D.L., Cirit, M. & Griffith, L.G. Interconnected Mi-crophysiological Systems for Quantitative Biology and Pharmacology Studies. Sci. Rep. 8, 4530 (2018).

Xiao, S., Coppeta, J.R., Rogers, H.B., Isenberg, B.C., Zhu, J., Olalekan, S.A., McKinnon, K.E., Dokic, D., Rashedi, A.S., Haisenleder, D.J., Malpani, S.S., Arnold-Murray, C.A., Chen, K., Jiang, M., Bai, L., Nguyen, C.T., Zhang, J., Laronda, M.M., Hope, T.J., Maniar, K.P., Pavone, M.E., Avram, M.J., Sefton, E.C., Getsios, S., Burdette, J.E., Kim, J.J., Borenstein, J.T. & Woodruff, T.K. A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. Nat. Commun. 8, 14584 (2017).

Tsamandouras, N., Chen, W.L.K., Edington, C.D., Stokes, C.L., Griffith, L.G. & Cirit, M. Integrated Gut and Liver Microphysiological Systems for Quantitative In Vitro Pharmacokinetic Studies. AAPS J. 19, 1499–1512 (2017).

Chen, W.L.K., Edington, C., Suter, E., Yu, J., Velazquez, J.J., Velazquez, J.G., Shockley, M., Large, E.M., Venkataramanan, R., Hughes, D.J., Stokes, C.L., Trumper, D.L., Carrier, R.L., Cirit, M., Griffith, L.G. & Lauffenburger, D.A. Integrated gut/liver micro-physiological systems elucidates inflammatory inter-tissue crosstalk. Biotechnol. Bioeng. 114, 2648–2659 (2017).

Sung, J.H., Kam, C. & Shuler, M.L. A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. Lab Chip 10, 446–455 (2010).

Lee, H., Kim, D.S., Ha, S.K., Choi, I., Lee, J.M. & Sung, J.H. A pumpless multi-organ-on-a-chip (MOC) combined with a pharmacokinetic-pharmacodynamic (PK-PD) model. Biotechnol. Bioeng. 114, 432–443 (2017).

Lee, D.W., Choi, N. & Sung, J.H. A microfluidic chip with gravity-induced unidirectional flow for perfusion cell culture. Biotechnol. Prog. (2018).

Wang, Y.I. & Shuler, M.L. UniChip enables long-term recirculating unidirectional perfusion with gravity-driven flow for microphysiological systems. Lab Chip 18, 2563–2574 (2018).

Satoh, T., Sugiura, S., Shin, K., Onuki-Nagasaki, R., Ishida, S., Kikuchi, K., Kakikic, M. & Kanamori, T. A multi-throughput multi-organ-on-a-chip system on a plate formatted pneumatic pressure-driven medium circulation platform. Lab Chip 18, 115–125 (2017).

Berthier, E., Young, E.W. & Beebe, D. Engineers are from PDMS-land, Biologists are from Poly-styrenia. Lab Chip 12, 1224–1237 (2012).

Esch, M.B., Prot, J.-M., Wang, Y.I., Miller, P., Llamas-Vidales, J.R., Naughton, B.A., Applegate, D.R. & Shuler, M.L. Multi-cellular 3D human primary liver cell culture elevates metabolic activity under fluidic flow. Lab Chip 15, 2269–2277 (2015).

Dubiak-Szepietowska, M., Karczmarczyk, A., Jönsson-Niedziólka, M., Winckler, T. & Feller, K.H. Development of complex-shaped liver multicellular spheroids as a human-based model for nanoparticle toxicity assessment in vitro. Toxicol. Appl. Pharmacol. 294, 78–85 (2016).

Rojkind, M., Novikoff, P.M., Greenwel, P., Rubin, J., Rojas-Valencia, L., de Carvalho, A.C., Stockert, R., Spray, D., Hertzberg, E.L. & Wolkoff, A.W. Characterization and functional studies on rat liver fat-storing cell line and freshly isolated hepatocyte coculture system. Am. J. Pathol. 146, 1508–1520 (1995).

Du, Y., Li, N., Yang, H., Luo, C., Gong, Y., Tong, C., Gao, Y., Lü, S. & Long M. Mimicking liver sinusoidal structures and functions using a 3D-configured microfluidic chip. Lab Chip 17, 782–794 (2017).

Kang, Y.B., Sodunke, T.R., Lamontagne, J., Cirillo, J., Rajiv, C., Bouchard, M.J. & Noh, M. Liver sinusoid on a chip: Long- term layered co-culture of primary rat hepatocytes and endothelial cells in mi-crofluidic platforms. Biotechnol. Bioeng. 112, 2571–2582 (2015).

Prodanov, L., Jindal, R., Bale, S.S., Hegde, M., McCarty, W.J., Golberg, I., Bhushan, A., Yarmush, M.L. & Usta, O.B. Long-term maintenance of a microfluidic 3D human liver sinusoid. Biotechnol. Bioeng. 113, 241–246 (2016).

Chau, D.Y., Johnson, C., MacNeil, S., Haycock, J.W. & Ghaemmaghami, A.M. The development of a 3D immunocompetent model of human skin. Biofabrication 5, 035011 (2013).

Pupovac, A., Senturk, B., Griffoni, C., Maniura-Weber, K., Rottmar, M. & McArthur, S.L. Toward Immu-nocompetent 3D Skin Models. Adv. Healthcare Mater. 7, e1701405 (2018).

Abaci, H.E., Gledhill, K., Guo, Z., Christiano, A.M. & Shuler, M.L. Pumpless microfluidic platform for drug testing on human skin equivalents. Lab Chip 15, 882–888 (2015).

Groeber, F., Engelhardt, L., Lange, J., Kurdyn, S., Schmid, F.F., Rücker, C., Mielke, S., Walles, H. & Hansmann, J. A first vascularized skin equivalent as an alternative to animal experimentation. ALTEX 33, 415–422 (2016).

Lee, S., Jin, S.P., Kim, Y.K., Sung, G.Y., Chung, J.H. & Sung, J.H. Construction of 3D multicellular microfluidic chip for an in vitro skin model. Biomed. Microdevices 19, 22 (2017).

Wufuer, M., Lee, G.H., Hur, W., Jeon, B., Kim, B.J., Choi, T.H. & Lee, S.H. Skin-on-a-chip model simulating inflammation, edema and drug-based treatment. Sci. Rep. 6, 37471 (2016).

Herland, A., van der Meer, A.D., FitzGerald, E.A., Park, T.-E., Sleeboom, J.J.F. & Ingberet, D.E. Distinct Contributions of Astrocytes and Pericytes to Neuroinflammation Identified in a 3D Human Blood-Brain Barrier on a Chip. PLoS One 11, e0150360 (2016).

Adriani, G., Ma, D., Pavesi, A., Kamm, R.D. & Goh, E.L. A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothe-lial cells as a blood-brain barrier. Lab Chip 17, 448–459 (2017).

Cho, H., Seo, J.H., Wong, K.H.K., Terasaki, Y., Park, J., Bong, K., Arai, K., Lo, E.H. & Irimia, D. Three-Dimensional Blood-Brain Barrier Model for in vitro Studies of Neurovascular Pathology. Sci. Rep. 5, 15222 (2015).

Wang, Y.I., Abaci, H.E. & Shuler, M.L. Microflu-idic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol. Bioeng. 114, 184–194 (2017).

Mi, S., Yi, X., Du, Z., Xu, Y. & Sun, W. Construction of a liver sinusoid based on the laminar flow on chip and self-assembly of endothelial cells. Biofabrication 10, 025010 (2018).

Huh, D., Matthews, B.D., Mammoto, A., Montoya-Zavala, M., Hsin, H.Y. & Ingber, D.E. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010).

Lee, S., Ko, J., Park, D., Lee, S.-R., Chung, M., Lee, Y. & Jeon, N.L. Microfluidic-based vascular-ized microphysiological systems. Lab Chip 18, 2686–2709 (2018).

Sung, J.H. & Shuler, M.L. A micro cell culture analog (microCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cy-totoxicity of anti-cancer drugs. Lab Chip 9, 1385–1394 (2009).

Jellali, R., Bricks, T., Jacques, S., Fleury, M.J., Paullier, P., Merlier, F. & Leclerc, E. Long-term human primary hepatocyte cultures in a microfluidic liver bi-ochip show maintenance of mRNA levels and higher drug metabolism compared with Petri cultures. Biopharm. Drug Dispos. 37, 264–275 (2016).

Lee, D.W., Ha, S.K., Choi, I. & Sung, J.H. 3D gut-liver chip with a PK model for prediction of first-pass metabolism. Biomed. Microdevices 19, 100 (2017).

Choe, A., Ha, S.K., Choi, I, Choi, N. & Sung, J.H. Microfluidic Gut-liver chip for reproducing the first pass metabolism. Biomed. Microdevices 19, 4 (2017).

Khetani, S.R., Berger, D.R., Ballinger, K.R., Davidson, M.D., Lin, C. & Ware, B.R. Microengi-neered liver tissues for drug testing. J. Lab. Autom. 20, 216–250 (2015).

Pang, K.S. Modeling of intestinal drug absorption: roles of transporters and metabolic enzymes (for the Gillette Review Series). Drug Metab. Dispos. 31, 1507–1519 (2003).

Esch, M.B., Sung, J.H., Yang, J., Yu, C., Yu, J., March, J.C. & Shuler, M.L. On chip porous polymer membranes for integration of gastrointestinal tract epithelium with microfluidic ‘body-on-a-chip’ devices. Biomed. Microdevices 14, 895–906 (2012).

Mahler, G.J., Esch, M.B., Glahn, R.P. & Shuler, M.L. Characterization of a gastrointestinal tract mi-croscale cell culture analog used to predict drug toxicity. Biotechnol. Bioeng. 104, 193–205 (2009).

Sung, J.H., Yu, J., Luo, D., Shuler, M.L. & March, J.C. Microscale 3-D hydrogel scaffold for biomi-metic gastrointestinal (GI) tract model. Lab Chip 11, 389–392 (2011).

Shim, K.Y., Lee, D., Han, J., Nguyen, N.T., Park, S. & Sung, J.H. Microfluidic gut-on-a-chip with three-dimensional villi structure. Biomed. Microdevices 19, 37 (2017).

Wells, J.M., Rossi, O., Meijerink, M. & van Baarlen P. Epithelial crosstalk at the microbiota-mucosal interface. Proc. Natl. Acad. Sci. U. S. A. 108 Suppl 1, 4607–4614 (2011).

Marzorati, M., Vanhoecke, B., De Ryck T., Sadaghian M.S.,, Pinheiro, I., Possemiers, S., Van den Abbeele, P., Derycke, L., Bracke, M., Pieters, J., Hennebel, T., Harmsen, H.J., Verstraete, W. & Van de Wiele, T. The HMI module: a new tool to study the Host-Microbiota Interaction in the human gastrointestinal tract in vitro. BMC Microbiol. 14, 133 (2014).

Chi, M., Yi, B., Oh, S., Park, D.J., Sung, J.H. & Park, S. A microfluidic cell culture device (muFCCD) to culture epithelial cells with physiological and morphological properties that mimic those of the human intestine. Biomed. Microdevices 17, 9966 (2015).

Kim, H.J., Huh, D., Hamilton, G. & Ingber, D.E. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12, 2165–2174 (2012).

Yu, J., Peng, S., Luo, D. & March, J.C. In vitro 3D human small intestinal villous model for drug permeability determination. Biotechnol. Bioeng. 109, 2173–2178 (2012).

Bricks, T., Hamon, J., Fleury, M.J., Jellali, R., Merlier, F., Herpe, Y.E., Seyer, A., Regimbeau, J.M., Bois, F. & Leclerc, E. Investigation of omeprazole and phenacetin first-pass metabolism in humans using a microscale bioreactor and pharmacokinetic models. Biopharm. Drug Dispos. 36, 275–293 (2015).

Prot, J.M., Maciel, L., Bricks, T., Merlier, F., Cotton, J., Paullier, P., Bois, F.Y. & Leclerc, E. First pass intestinal and liver metabolism of paracetamol in a microfluidic platform coupled with a mathematical modeling as a means of evaluating ADME processes in humans. Biotechnol. Bioeng. 111, 2027–2040 (2014).

Skardal, A., Murphy, S.V., Devarasetty, M., Mead, I., Kang, H.-W., Seol, Y.-J., Zhang, Y.S., Shin, S.-R., Zhao, L., Aleman, J., Hall, A.R., Shupe, T.D., Kleensang, A., Dokmeci, M.R., Lee, S.J., Jackson, J.D., Yoo, J.J., Hartung, T., Khademhosseini, A., Soker, S., Bishop, C.E. & Atala, A. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci. Rep. 7, 8837 (2017).

Oleaga, C., Bernabini, C., Smith, A.S., Srinivasan, B., Jackson, M., McLamb, W., Platt, V., Bridges, R., Cai, Y., Santhanam, N., Berry, B., Najjar, S., Akanda, N., Guo, X., Martin, C., Ekman, G., Esch, M.B., Langer, J., Ouedraogo, G., Cotovio, J., Breton, L., Shuler, M.L. & Hickman, J.J. Multi-Organ tox-icity demonstration in a functional human in vitro system composed of four organs. Sci. Rep. 6, 20030 (2016).

Oleaga, C., Riu, A., Rothemund, S., Lavado, A., McAleer, C.W., Long, C.J., Persaud, K., Narasimhan, N.S., Tran, M., Roles, J., Carmona-Moran, C.A., Sasserath, T., Elbrecht, D.H., Kumanchik, L., Bridges, L.R., Martin, C., Schnepper, M.T., Ekman, G., Jackson, M., Wang, Y.I., Note, R., Langer, J., Teissier, S. & Hickman, J.J. Investigation of the effect of hepatic metabolism on off-target cardiotoxicity in a multi-organ human-on-a-chip system. Biomaterials 182, 176–190 (2018).

Dehne, E.-M., Hasenberg, T., Horland, R. & Marx, U. Multi-organ on a chip: Human physiology-based assessment of liver toxicity. Toxicol. Lett. 280, S75 (2017).

Maschmeyer, I., Hasenberg, T., Jaenicke, A., Lindner, M., Lorenz, A.K., Zech, J., Garbe, L.A., Sonntag, F., Hayden, P., Ayehunie, S., Lauster, R., Marx, U. & Materne, E.M. Chip-based human liver-intestine and liver-skin co-cultures—A first step toward systemic repeated dose substance testing in vitro. Eur. J. Pharm. Biopharm. 95, 77–87 (2015).

Materne, E.M., Ramme, A.P., Terrasso, A.P., Serra, M., Alves, P.M., Brito, C., Sakharov, D.A., Tonevitsky, A.G., Lauster, R. & Marx, U. A multi-organ chip co-culture of neurospheres and liver equivalents for long-term substance testing. J. Biotechnol. 205, 36–46 (2015).

Wagner, I., Materne, E.M., Brincker, S., Süssbier, U., Frädrich, C., Busek, M., Sonntag, F., Sakharov, D.A., Trushkin, E.V., Tonevitsky, A.G., Lauster, R. & Marx, U. A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture. Lab Chip 13, 3538–3547 (2013).

Miller, P.G. & Shuler, M.L. Design and demonstration of a pumpless 14 compartment microphysio-logical system. Biotechnol. Bioeng. 113, 2213–2227 (2016).

Konrad, D. & Wueest, S. The gut-adipose-liver axis in the metabolic syndrome. Physiology (Bethesda) 29, 304–313 (2014).

Lee, S.Y. & Sung, J.H. Gut-liver on a chip toward an in vitro model of hepatic steatosis. Biotechnol. Bioeng. 115, 2817–2827 (2018).

Iori, E., Vinci, B., Murphy, E., Marescotti, M.C., Avogaro, A. & Ahluwalia, A. Glucose and fatty acid metabolism in a 3 tissue in-vitro model challenged with normo- and hyperglycaemia. PLoS One 7, e34704 (2012).

Sung, J.H., Wang, Y.I., Kim, J.H., Lee, J.M. & Shuler, M.L. Application of Chemical Reaction Engineering Principles to “Body-on-a-Chip” Systems AIChE J. 64, 4351–4360 (2018).

Davis, H., Gonzalez, M., Stancescu, M., Love, R., Hickman, J.J. & Lambert, S. A phenotypic culture system for the molecular analysis of CNS mye-lination in the spinal cord. Biomaterials 35, 8840–8845 (2014).

Ahluwalia, A. Allometric scaling in-vitro. Sci. Rep. 7, 42113 (2017).

Sbrana, T. & Ahluwalia, A. Engineering Quasi-Vivo in vitro organ models. Adv. Exp. Med. Biol. 745, 138–153 (2012).

Ucciferri, N., Sbrana, T. & Ahluwalia, A. Allometric Scaling and Cell Ratios in Multi-Organ in vitro Models of Human Metabolism. Front. Bioeng. Bio-technol. 2, 74 (2014).

Mazzei, D., Guzzardi, M.A., Giusti, S. & Ahluwalia, A. A low shear stress modular bioreactor for connected cell culture under high flow rates. Biotechnol. Bioeng. 106, 127–137 (2010).

Moraes, C., Labuz, J.M., Leung, B.M., Inoue, M., Chun, T.H. & Takayama, S. On being the right size: scaling effects in designing a human-on-a-chip. Integr. Biol. 5, 1149–1161 (2013).

Wikswo, J.P., Curtis, E.L., Eagleton, Z.E., Evans, B.C., Kole, A., Hofmeister, L.H. & Matloff, W.J. Scaling and systems biology for integrating multiple organs-on-a-chip. Lab Chip 13, 3496–3511 (2013).

Abaci, H.E. & Shuler, M.L. Human-on-a-chip design strategies and principles for physiologically based pharmacokinetics/pharmacodynamics modeling. Integr. Biol. 7, 383–391 (2015).

Stokes, C.L., Cirit, M. & Lauffenburger, D.A. Physiome-on-a-Chip: The Challenge of “Scaling” in Design, Operation, and Translation of Microphysi-ological Systems. CPT: Pharmacometrics Syst. Pharmacol. 4, 559–562 (2015).

Maass, C., Stokes, C.L., Griffith, L.G. & Cirit, M. Multi-functional scaling methodology for transla-tional pharmacokinetic and pharmacodynamic applications using integrated microphysiological systems (MPS). Integr. Biol. 9, 290–302 (2017).

Urban, G., Bache, K., Phan, D.T.T., Sobrino, A., Shmakov, A.K., Hachey, S.J., Hughes, C.C.W. & Baldi, P. Deep Learning for Drug Discovery and Cancer Research: Automated Analysis of Vascular-ization Images. IEEE/ACM Trans. Comput. Biol. Bioinf. 16, 1029–1035 (2018).

Ouattara, D.A., Choi, S.H., Sakai, Y., Péry, A.R. & Brochot, C. Kinetic modelling of in vitro cell-based assays to characterize non-specific bindings and ADME processes in a static and a perfused fluidic system. Toxicol. Lett. 205, 310–319 (2011).

Tatosian, D.A. & Shuler, M.L. A novel system for evaluation of drug mixtures for potential efficacy in treating multidrug resistant cancers. Biotechnol. Bioeng. 103, 187–198 (2009).

Yu, J., Cilfone, N.A., Large, E.M., Sarkar, U., Wishnok, J.S., Tannenbaum, S.R., Hughes, D.J., Lauffenburger, D.A., Griffith, L.G., Stokes, C.L. & Cirit, M. Quantitative Systems Pharmacology Approaches Applied to Microphysiological Systems (MPS): Data Interpretation and Multi-MPS Integration. CPT: Pharmacometrics Syst. Pharmacol. 4, 585–594 (2015).

Guo, X., Colon, A., Akanda, N., Spradling, S., Stancescu, M., Martin, C. & Hickman, J.J. Tissue engineering the mechanosensory circuit of the stretch reflex arc with human stem cells: Sensory neuron innervation of intrafusal muscle fibers. Bio-materials 122, 179–187 (2017).

Moore, N., Doty, D., Zielstorff, M., Kariv, I., Moy, L.Y., Gimbel, A., Chevillet, J.R., Lowry, N., Santos, J., Mott, V., Kratchman, L., Lau, T., Addona, G., Chen, H. & Borenstein, J.T. A multiplexed micro-fluidic system for evaluation of dynamics of immune-tumor interactions. Lab Chip 18, 1844–1858 (2018).

Ribas, J., Pawlikowska, J. & Rouwkema, J. Micro-physiological systems: analysis of the current status, challenges and commercial future. Microphysiol. Syst. 2 (2018).