Midazolam, hippocampal function, and transitive inference: Reply to Greene

Behavioral and Brain Functions - Tập 4 - Trang 1-5 - 2008
Michael J Frank1, Randall C O'Reilly2, Tim Curran2
1Dept of Psychology and Program in Neuroscience, University of Arizona, Tucson, USA
2Dept of Psychology and Center for Neuroscience, University of Colorado at Boulder, Boulder, USA

Tóm tắt

The transitive inference (TI) task assesses the ability to generalize learned knowledge to new contexts, and is thought to depend on the hippocampus (Dusek & Eichenbaum, 1997). Animals or humans learn in separate trials to choose stimulus A over B, B over C, C over D and D over E, via reinforcement feedback. Transitive responding based on the hierarchical structure A > B > C > D > E is then tested with the novel BD pair. We and others have argued that successful BD performance by animals – and even humans in some implicit studies – can be explained by simple reinforcement learning processes which do not depend critically on the hippocampus, but rather on the striatal dopamine system. We recently showed that the benzodiazepene midazolam, which is thought to disrupt hippocampal function, profoundly impaired human memory recall performance but actually enhanced implicit TI performance (Frank, O'Reilly & Curran, 2006). We posited that midazolam biased participants to recruit striatum during learning due to dysfunctional hippocampal processing, and that this change actually supported generalization of reinforcement values. Greene (2007) questions the validity of our pharmacological assumptions and argues that our conclusions are unfounded. Here we stand by our original hypothesis, which remains the most parsimonious account of the data, and is grounded by multiple lines of evidence.

Tài liệu tham khảo

Frank MJ, Rudy JW, Levy WB, O'Reilly RC: When Logic Fails: Implicit Transitive Inference in Humans. Mem Cognit. 2005, 33: 742-50. von Fersen L, Wynne CDL, Delius JD, Staddon JER: Transitive inference in pigeons. J Exp Psychol Anim Behav Proc. 1991, 17: 334-341. 10.1037/0097-7403.17.3.334. Wynne CD: A minimal model of transitive inference. Models of Action. Edited by: Wynne CD, Staddon JE. 1998, New Jersey: Lawrence Erlbaum Associates, 269-307. Frank MJ, Rudy JW, O'Reilly RC: Transitivity, flexibility, conjunctive representations and the hippocampus: II. A Computational analysis. Hippocampus. 2003, 13: 341-54. 10.1002/hipo.10084. Siemann M, Delius JD: Algebraic learning and neural network models for transitive and non-transitive responding. Eur J Cogn Psychol. 1998, 10: 307-334. 10.1080/713752279. Frank MJ: Dynamic dopamine modulation in the basal ganglia: A neurocomputational account of cognitive deficits in medicated and non-medicated Parkinsonism. J Cogn Neurosci. 2005, 17: 51-72. 10.1162/0898929052880093. Frank MJ, Seeberger LC, O'Reilly RC: By carrot or by stick: Cognitive reinforcement learning in Parkinsonism. Science. 2004, 306: 1940-3. 10.1126/science.1102941. Poldrack RA, Packard MG: Competition among multiple memory systems: converging evidence from animal and human brain studies. Neuropsychologia. 2003, 41: 245-251. 10.1016/S0028-3932(02)00157-4. Atallah HE, Frank MJ, O'Reilly RC: Hippocampus cortex and basal ganglia: insights from computational models of complementary learning systems. Neurobiol Learn Mem. 2004, 82 (3): 253-267. 10.1016/j.nlm.2004.06.004. Rovira C, Ben-Ari Y: Developmental study of benzodiazepene effects on monosynaptic GABAA-mediated IPSPs of rat hippocampal neurons. J Neurophysiol. 1993, 70 (3): 1076-1085. Poncer JC, Durr R, Gahwiler BH, Thompson SM: Modulation of synaptic GABAA receptor function by benzodiazepenes in area CA3 of rat hippocampal slice cultures. Neuropharmacology. 1996, 35: 1169-79. 10.1016/S0028-3908(96)00055-X. Kristiansen U, Lambert JD: Benzodiazepene and barbituate ligands modulate responses of cultured hippocampal neurones to the GABAA receptor partial agonist, 4-PIOL. Neuropharmacology. 1996, 35: 1181-91. 10.1016/S0028-3908(96)00070-6. Kobayashi S, Fujito Y, Matsuyama K, Aoki M: Differential effects of midazolam on inhibitory postsynaptic currents in CA1 pyramidal cells and dentate gyrus granule cells of rat hippocampal slices. Brain Res. 2004, 1003: 176-82. 10.1016/j.brainres.2004.01.015. Imperato A, Dazzi L, Obinu MC, Gessa GL, Biggio G: Inhibition of hippocampal acetylcholine release by benzodiazepines: antagonism by flumazenil. Eur J Pharmacol. 1993, 238: 135-137. 10.1016/0014-2999(93)90518-M. Reinsel RA, Veselis RA, Dnistrian AM, Feshchenko VA, Beattle BJ, Duff MR: Midazolam decreases cerebral blood flow in the left prefrontal cortex in a dose-dependent fashion. Int J Neuropsychopharmacol. 2000, 3: 117-27. 10.1017/S1461145700001814. Merritt P, Hirshman E, Zamani S, Hsu J, Berrigan M: Episodic representations support early semantic learning: evidence from midazolam induced amnesia. Brain Cogn. 2006, 61 (2): 219-223. 10.1016/j.bandc.2005.12.001. Malmberg KJ, Zeelenberg R, Shiffrin RM: Turning up the noise or turning down the volume? On the nature of the impairment of episodic recognition memory by midazolam. J Exp Psychol Learn Mem Cogn. 2004, 30 (2): 540-549. 10.1037/0278-7393.30.2.540. Evans MS, Viola-McCabe KE: Midazolam inhibits long-term potentiation through modulation of GABA-A receptors. Neuropharmacology. 1996, 35: 347-57. 10.1016/0028-3908(95)00182-4. Frank MJ, OReilly RC, Curran T: When memory fails, intuition reigns: Midazolam enhances implicit inference in humans. Psychol Sci. 2006, 17: 700-707. 10.1111/j.1467-9280.2006.01769.x. Poldrack RA, Clark J, PareBlagoev EJ, Shohamy D, Moyano JC, Myers C, Gluck MA: Interactive memory systems in the human brain. Nature. 2001, 414: 546-549. 10.1038/35107080. Shohamy D, Myers CE, Kalanithi J, Gluck MA: Basal ganglia and dopamine contributions to probabilistic category learning. Neurosci Biobehav Rev. 2007 Greene AJ: Implicit transitive inference and the human hippocampus: does intravenous midazolam function as a reversible hippocampal lesion?. Behav Brain Funct. 2007, 3: 51-10.1186/1744-9081-3-51. Nagode JC, Pardo JV: Human hippocampal activation during transitive inference. Neuroreport. 2002, 13: 939-944. 10.1097/00001756-200205240-00008. Acuna BD, Eliassen JC, Donoghue JP, Sanes JN: Frontal and Parietal Lobe Activation during Transitive Inference in Humans. Cereb Cortex. 2002, 12: 1312-1321. 10.1093/cercor/12.12.1312. Gerfen CR, Wilson C: The basal ganglia. Handbook of chemical neuroanatomy. Integrated systems of the CNS. Edited by: Swanson L, Bjorkland A, Hokfelt T. 1996, Amsterdam: Elsevier, 12: 371-468. Rattan AK, Tejwani GA: Effect of chronic treatment with morphine, midazolam and both together on dynorphin(1–13) levels in the rat. Brain Res. 1997, 754 (1–2): 239-244. 10.1016/S0006-8993(97)00084-X. Tejwani GA, Rattan AK: Met-enkephalin alteration in the rat during chronic injection of morphine and/or midazolam. Brain Res. 1997, 775 (1–2): 119-126. 10.1016/S0006-8993(97)00875-5. Gil E, Colado I, Lopez F, Fernandez-Briera A, Fernandez-Lopez A, Calvo P: Effects of chronic treatment with ethanol and withdrawal of ethanol on levels of dopamine, 3,4-dihydroxyphenylacetic acid and homovanillic acid in the striatum of the rat. Influence of benzodiazepines, barbiturate and somatostatin. Neuropharmacology. 1992, 31 (11): 1151-1156. 10.1016/0028-3908(92)90011-D. Foerde K, Knowlton BJ, Poldrack RA: Modulation of competing memory systems by distraction. Proc Natl Acad Sci USA. 2006, 103 (31): 11778-11783. 10.1073/pnas.0602659103. Montpied P, Martin BM, Cottingham SL, Stubblefield BK, Ginns EI, Paul SM: Regional distribution of the GABAA/benzodiazepene receptor (alpha subunit) mRNA in rat brain. J Neurochem. 1988, 51: 1651-4. 10.1111/j.1471-4159.1988.tb01137.x. Curran T, DeBuse C, Woroch B, Hirshman E: Combined pharmacological and electrophysiological dissociation of familiarity and recollection. J Neurosci. 2006, 26 (7): 1979-1985. 10.1523/JNEUROSCI.5370-05.2006. Smith C, Squire LR: Declarative memory, awareness, and transitive inference. J Neurosci. 2005, 25 (44): 10138-10146. 10.1523/JNEUROSCI.2731-05.2005. Driscoll I, Sutherland RJ, Prusky GT, Rudy JW: Damage to the Hippocampal Formation Does Not Disrupt Representational Flexibility as Measured by a Novelty Transfer Test. Behav Neurosci. 2004, 118 (6): 1427-1432. 10.1037/0735-7044.118.6.1427. Bayley PJ, Frascino JC, Squire LR: Robust habit learning in the absence of awareness and independent of the medial temporal lobe. Nature. 2005, 436: 550-3. 10.1038/nature03857. Hirshman E, Passannante A, Arndt J: Midazolam Amnesia and Conceptual Processing in Implicit Memory. J Exp Psychol Gen. 2001, 130: 453-465. 10.1037/0096-3445.130.3.453. Arndt J, Passannante A, Hirshman E: The effect of midazolam on implicit and explicit memory in category exemplar production and category cued recall. Memory. 2004, 12: 158-73. 10.1080/09658210244000270. Thomas-Anterion C, Koenig O, Navez M, Laurent B: Midazolam effects on implicit and explicit memory processes in healthy subjects. Psychopharmacology. 1999, 145: 139-43. 10.1007/s002130051042. Hirshman E, Fisher J, Henthorn T, Arndt J, Passannante A: Midazolam amnesia and dual-process models of the word-frequency mirror effect. J Mem Lang. 2002, 47: 499-516. 10.1016/S0749-596X(02)00017-7. Park H, Quinlan J, Thornton E, Reder LM: The effect of midazolam on visual search: Implications for understanding amnesia. Proc Natl Acad Sci USA. 2004, 101: 17879-83. 10.1073/pnas.0408075101. Giovanello KS, Schnyer DM, Verfaeilie M: A critical role for the anterior hippocampus in relational memory: evidence from an fMRI study comparing associative and item recognition. Hippocampus. 2004, 14: 5-8. 10.1002/hipo.10182. Greene AJ, Gross WL, Elsinger CL, Rao SM: An FMRI analysis of the human hippocampus: inference, context, and task awareness. J Cogn Neurosci. 2006, 18 (7): 1156-1173. 10.1162/jocn.2006.18.7.1156.