Mid-latitude precipitation in East Asia influenced by a fluctuating greenhouse climate during the latest Cretaceous through the earliest Paleogene
Tài liệu tham khảo
Adams, 2011, Evaluating the use of weathering indices for determining mean annual precipitation in the ancient stratigraphic record, Paleogeogr. Paleoclimatol. Paleoecol., 309, 358, 10.1016/j.palaeo.2011.07.004
Adler, 2003, The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present), J. Hydrometeorol., 4, 1147, 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
Araguás-Araguás, 1998, Stable isotope composition of precipitation over Southeast Asia, J. Geophys. Res., 103, 28721, 10.1029/98JD02582
Archer, 2005, Fate of fossil fuel CO2 in geologic time, J. Geophys. Res: Oceans, 110
Barnet, 2018, A new high-resolution chronology for the late Maastrichtian warming event: establishing robust temporal links with the onset of Deccan volcanism, Geology, 46, 147, 10.1130/G39771.1
Barrera, 1999, Evolution of late Campanian-Maastrichtian marine climates and oceans, Geol. Soc. Am. Spec. Pap., 245
Birch, 2016, Partial collapse of the marine carbon pump after the Cretaceous-Paleogene boundary, Geology, 44, 287, 10.1130/G37581.1
Caves, 2015, Role of the westerlies in Central Asia climate over the Cenozoic, Earth Planet. Sci. Lett., 428, 33, 10.1016/j.epsl.2015.07.023
Caves, 2016, Cenozoic carbon cycle imbalances and a variable weathering feedback, Earth Planet. Sci. Lett., 450, 152, 10.1016/j.epsl.2016.06.035
Caves Rugenstein, 2019, Neogene cooling driven by land surface reactivity rather than increased weathering fluxes, Nature, 571, 99, 10.1038/s41586-019-1332-y
Chamberlain, 2013, Stable isotopic evidence for climate and basin evolution of the late cretaceous Songliao basin, China, Paleogeogr. Paleoclimatol. Paleoecol., 385, 106, 10.1016/j.palaeo.2012.03.020
Cheng, 2009, Uppermost cretaceous sediments: Sedimentary microfacies and sedimentary environment evolution of Sifangtai Formation and Mingshui Formation in SK-I (n), Earth Sci. Front., 16, 85
Chou, 2012, Changes in the annual range of precipitation under global warming, J. Clim., 25, 222, 10.1175/JCLI-D-11-00097.1
Cleveland, 2008, Paleosols, trace fossils, and precipitation estimates of the uppermost Triassic strata in northern New Mexico, Paleogeogr. Paleoclimatol. Paleoecol., 257, 421, 10.1016/j.palaeo.2007.09.023
Delworth, 2012, Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model, J. Clim., 25, 2755, 10.1175/JCLI-D-11-00316.1
Deng, 2013, Chronology of the terrestrial Upper cretaceous in the Songliao Basin, Northeast Asia, Paleogeogr. Paleoclimatol. Paleoecol., 385, 44, 10.1016/j.palaeo.2012.07.028
Dixon, 2012, Chemical weathering response to tectonic forcing: A soils perspective from the San Gabriel Mountains, California, Earth Planet. Sci. Lett., 323-324, 40, 10.1016/j.epsl.2012.01.010
Endo, 2014, Thermodynamic and dynamic effects on regional monsoon rainfall changes in a warmer climate, Geophys. Res. Lett., 41, 1704, 10.1002/2013GL059158
Fang, 2019, Paleogene global cooling–induced temperature feedback on chemical weathering, as recorded in the northern Tibetan Plateau, Geology, 47, 992, 10.1130/G46422.1
Fedo, 1995, Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance, Geology, 23, 921, 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2
Feng, 2010, Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao basin, northeast China, Basin Res., 22, 79, 10.1111/j.1365-2117.2009.00445.x
Feng, 2013, Continental scientific drilling project of cretaceous Songliao Basin: scientific objectives and drilling technology, Paleogeogr. Paleoclimatol. Paleoecol., 385, 6, 10.1016/j.palaeo.2012.03.016
Foster, 2017, Future climate forcing potentially without precedent in the last 420 million years, Nat. Commun., 8, 14845, 10.1038/ncomms14845
Friedrich, 2012, Evolution of middle to late cretaceous oceans—a 55 m.y. record of Earth’s temperature and carbon cycle, Geology, 40, 107, 10.1130/G32701.1
Gao, 2013, Clay mineralogy of the middle Mingshui Formation (upper Campanian to lower Maastrichtian) from the SKIn borehole in the Songliao Basin, NE China: implications for palaeoclimate and provenance, Paleogeogr. Paleoclimatol. Paleoecol., 385, 162, 10.1016/j.palaeo.2012.10.038
Gao, 2015, Mid-latitude terrestrial climate of East Asia linked to global climate in the late cretaceous, Geology, 43, 287, 10.1130/G36427.1
Gao, 2015, Diagenetic and paleoenvironmental controls on late cretaceous clay minerals in the Songliao Basin, Northeast China, Clay Clay Miner., 63, 469, 10.1346/CCMN.2015.0630605
Gao, 2016, Mid-latitude terrestrial climate of East Asia linked to global climate in the late cretaceous: REPLY, Geology, 44, 10.1130/G37574Y.1
Gao, 2019, Progress on continental Scientific Drilling project of cretaceous Songliao Basin (SK-1 and SK-2), Sci. Bull., 64, 73, 10.1016/j.scib.2018.12.017
Gao, 2021, Terrestrial climate in mid-latitude East Asia from the latest cretaceous to the earliest Paleogene: a multiproxy record from the Songliao Basin in northeastern China, Earth-Sci. Rev., 103572
Gao, 2021, Clay mineralogical evidence for mid-latitude terrestrial climate change from the latest cretaceous through the earliest Paleogene in the Songliao Basin, NE China, Cretac. Res., 124, 10.1016/j.cretres.2021.104827
Gilabert, 2021, Contribution of orbital forcing and Deccan volcanism to global climatic and biotic changes across the Cretaceous-Paleogene boundary at Zumaia, Spain, Geology, 50, 21, 10.1130/G49214.1
Graham, 2001, Sedimentary record and tectonic implications of Mesozoic rifting in Southeast Mongolia, Geol. Soc. Am. Bull., 113, 1560, 10.1130/0016-7606(2001)113<1560:SRATIO>2.0.CO;2
Held, 2006, Robust responses of the hydrological cycle to global warming, J. Clim., 19, 5686, 10.1175/JCLI3990.1
Higuchi, 2021, Differences between Present-day and cretaceous hydrological cycle responses to rising CO2 concentration, Geophys. Res. Lett., 10.1029/2021GL094341
Hu, 2012, Marine rapid environmental/climatic change in the cretaceous greenhouse world, Cretac. Res., 38, 1, 10.1016/j.cretres.2012.04.012
Huang, 2013, Paleoatmospheric pCO2 fluctuations across the Cretaceous–Tertiary boundary recorded from paleosol carbonates in NE China, Paleogeogr. Paleoclimatol. Paleoecol., 385, 95, 10.1016/j.palaeo.2013.01.005
Hull, 2020, On impact and volcanism across the Cretaceous-Paleogene boundary, Science, 367, 266, 10.1126/science.aay5055
Ibarra, 2015, Quantifying closed-basin lake temperature and hydrology by inversion of oxygen isotope and trace element paleoclimate records, Am. J. Sci., 315, 781, 10.2475/09.2015.01
IPCC, 2021, Summary for Policymakers
IPCC, 2021, Annex III: Tables of historical and projected well-mixed greenhouse gas mixing ratios and effective radiative forcing of all climate forcers
Jones, 2018, Evaluating late cretaceous OAEs and the influence of marine incursions on organic carbon burial in an expansive East Asian paleo-lake, Earth Planet. Sci. Lett., 484, 41, 10.1016/j.epsl.2017.11.046
Jung, 2013, Campanian-Maastrichtian Ocean circulation in the tropical Pacific, Paleoceanography, 28, 562, 10.1002/palo.20051
Keller, 2012, Nature and timing of extinctions in Cretaceous-Tertiary planktic foraminifera preserved in Deccan intertrappean sediments of the Krishna–Godavari Basin, India, Earth Planet. Sci. Lett., 341-344, 211, 10.1016/j.epsl.2012.06.021
Landwehrs, 2021, Investigating mesozoic climate trends and sensitivities with a large ensemble of climate model simulations, Paleoceanogr. Paleoclimatol., 36, 10.1029/2020PA004134
Lee, 2021, Future Global Climate: Scenario-Based Projections and Near-Term Information
Li, 2011, Palynological record from a composite core through late Cretaceous–early Paleocene deposits in the Songliao Basin, Northeast China and its biostratigraphic implications, Cretac. Res., 32, 1, 10.1016/j.cretres.2010.09.001
Li, 2019, Charophytes from the Cretaceous–Paleocene boundary in the Songliao Basin (north-eastern China): a Chinese biozonation and its calibration to the Geomagnetic Polarity Time Scale, Palaeontology, 5, 47, 10.1002/spp2.1225
Liivamägi, 2014, Late Neoproterozoic Baltic paleosol: intense weathering at high latitude?, Geology, 42, 323, 10.1130/G35209.1
Maher, 2014, Hydrologic regulation of chemical weathering and the geologic carbon cycle, Science, 343, 1502, 10.1126/science.1250770
Mateo, 2017, Early to late Maastrichtian environmental changes in the Indian Ocean compared with Tethys and South Atlantic, Paleogeogr. Paleoclimatol. Paleoecol., 478, 121, 10.1016/j.palaeo.2017.01.027
McFadden, 1985, Rate and depth of pedogenic-carbonate accumulation in soils: Formulation and testing of a compartment model, GSA Special Paper, 203, 23
Myers, 2012, Palaeoclimate of the late jurassic of Portugal: Comparison with the western United States, Sedimentology, 59, 1695, 10.1111/j.1365-3091.2012.01322.x
Myers, 2014, Multiproxy approach reveals evidence of highly variable paleoprecipitation in the Upper Jurassic Morrison Formation (western United States), Geol. Soc. Am. Bull., 126, 1105, 10.1130/B30941.1
Nava, 2021, Reconciling early Deccan Traps CO2 outgassing and pre-KPB global climate, Proc. Natl. Acad. Sci. U. S. A., 118
NBSC (National Bureau of Statistics of China)
Neale, 2008, The impact of convection on ENSO: from a delayed oscillator to a series of events, J. Clim., 21, 5904, 10.1175/2008JCLI2244.1
Nesbitt, 1982, Early Proterozoic climates and plate motions inferred from major element chemistry of lutites, Nature, 299, 715, 10.1038/299715a0
NOAA
Nordt, 2003, Terrestrial evidence for two greenhouse events in the latest cretaceous, GSA Today, 13, 4, 10.1130/1052-5173(2003)013<4:TEFTGE>2.0.CO;2
Nordt, 2006, Vertisol carbonate properties in relation to mean annual precipitation: implications for paleoprecipitation estimates, J. Geol., 114, 501, 10.1086/504182
Nordt, 2002, C4 plant productivity and climate-CO2 variations in south-Central Texas during the late Quaternary, Quat. Res., 58, 182, 10.1006/qres.2002.2344
O’Brien, 2017, Cretaceous sea-surface temperature evolution: constraints from TEX86 and planktonic foraminiferal oxygen isotopes, Earth-Sci. Rev., 172, 224, 10.1016/j.earscirev.2017.07.012
Ohta, 2007, Statistical empirical index of chemical weathering in igneous rocks: a new tool for evaluating the degree of weathering, Chem. Geol., 240, 280, 10.1016/j.chemgeo.2007.02.017
Ohta, 2011, Early cretaceous terrestrial weathering in Northern China: relationship between paleoclimate change and the phased evolution of the Jehol Biota, J. Geol., 119, 81, 10.1086/657341
Orr, 2021, Paleoclimate and paleoenvironment reconstruction of paleosols spanning the lower to Upper cretaceous from the Rukwa Rift Basin, Tanzania, Paleogeogr. Paleoclimatol. Paleoecol., 577, 10.1016/j.palaeo.2021.110539
Penman, 2020, Silicate weathering as a feedback and forcing in Earth's climate and carbon cycle, Earth-Sci. Rev., 103298
Qu, 2014, Late Cretaceous–early Paleocene ostracod biostratigraphy of Scientific Drilling Sk1 (N) in the Songliao Basin, Northeast China, J. Paleontol., 88, 786, 10.1666/13-076
Qu, 2014, Consistent responses of East Asian summer mean rainfall to global warming in CMIP5 simulations, Theor. Appl. Climatol., 117, 123, 10.1007/s00704-013-0995-9
Räisänen, 2002, CO2-induced changes in interannual temperature and precipitation variability in 19 CMIP2 experiments, J. Clim., 15, 2395, 10.1175/1520-0442(2002)015<2395:CICIIT>2.0.CO;2
Retallack, 1994, A pedotype approach to latest cretaceous and earliest Tertiary paleosols in eastern Montana, Geol. Soc. Am. Bull., 106, 1377, 10.1130/0016-7606(1994)106<1377:APATLC>2.3.CO;2
Retallack, 2000, Depth to pedogenic carbonate horizon as a paleoprecipitation indicator?, Comment. Geology, 28, 572
Retallack, 2001
Retallack, 2005, Pedogenic carbonate proxies for amount and seasonality of precipitation in paleosols, Geology, 33, 333, 10.1130/G21263.1
Retallack, 2010, Depth to gypsic horizon as a proxy for paleoprecipitation in paleosols of sedimentary environments, Geology, 38, 403, 10.1130/G30514.1
Rugenstein, 2018, The evolution of hydroclimate in Asia over the Cenozoic: a stable-isotope perspective, Earth-Sci. Rev., 185, 1129, 10.1016/j.earscirev.2018.09.003
Rugenstein, 2021, Isotope mass-balance constraints preclude that mafic weathering drove Neogene cooling, Proc. Natl. Acad. Sci. U. S. A., 118, 10.1073/pnas.2026345118
Schoene, 2019, U-Pb constraints on pulsed eruption of the Deccan Traps across the end-cretaceous mass extinction, Science, 363, 862, 10.1126/science.aau2422
Sheldon, 2001, Equation for compaction of paleosols due to burial, Geology, 29, 247, 10.1130/0091-7613(2001)029<0247:EFCOPD>2.0.CO;2
Sheldon, 2009, Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols, Earth-Sci. Rev., 95, 1, 10.1016/j.earscirev.2009.03.004
Sheldon, 2002, Geochemical climofunctions from north American soils and application to paleosols across the Eocene-Oligocene boundary in Oregon, J. Geol., 110, 687, 10.1086/342865
Soil Survey Staff, 2014, 600
Sprain, 2019, The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary, Science, 363, 866, 10.1126/science.aav1446
Stiles, 2001, Pedogenic iron-manganese nodules in Vertisols: a new proxy for paleoprecipitation?, Geology, 29, 943, 10.1130/0091-7613(2001)029<0943:PIMNIV>2.0.CO;2
Tabor, 2015, Paleosols as Indicators of Paleoenvironment and Paleoclimate, Annu. Rev. Earth Planet. Sci., 43, 333, 10.1146/annurev-earth-060614-105355
Thibault, 2016, Late cretaceous (late Campanian–Maastrichtian) sea-surface temperature record of the Boreal Chalk Sea, Clim. Past, 12, 429, 10.5194/cp-12-429-2016
Tierney, 2020, Past climates inform our future, Science, 370, 6517, 10.1126/science.aay3701
Tobin, 2014, Environmental change across a terrestrial Cretaceous-Paleogene boundary section in eastern Montana, USA, constrained by carbonate clumped isotope paleothermometry, Geology, 42, 351, 10.1130/G35262.1
Walker, 1981, A negative feedback mechanism for the long-term stabilization of Earth's surface temperature, J. Geophys. Res: Oceans, 86, 9776, 10.1029/JC086iC10p09776
Wan, 2013, Late cretaceous stratigraphy, Songliao Basin, NE China: SK1 cores, Paleogeogr. Paleoclimatol. Paleoecol., 385, 31, 10.1016/j.palaeo.2012.10.024
Wang, 2021, Monsoons climate change assessment, Bull. Am. Meteorol. Soc., 102, E1, 10.1175/BAMS-D-19-0335.1
Wang, 2013, Cretaceous paleogeography and paleoclimate and the setting of SKI borehole sites in Songliao Basin, Northeast China, Paleogeogr. Paleoclimatol. Paleoecol., 385, 17, 10.1016/j.palaeo.2012.01.030
Wang, 2013, Late cretaceous climate changes recorded in Eastern Asian lacustrine deposits and north American Epieric Sea strata, Earth-Sci. Rev., 126, 275, 10.1016/j.earscirev.2013.08.016
Wang, 2021, An unbroken record of climate during the age of dinosaurs, Eos, 102, 10.1029/2021EO158455
Wang, 2015, High resolution continuous sedimentary records of Upper cretaceous obtained from the continental drilling (SK-1) borehole in Songliao Basin: Sifangtai and Mingshui Formations, Geosci. Front., 6, 895, 10.1016/j.gsf.2015.02.003
Wang, 2016, Tectonics and cycle system of the cretaceous Songliao Basin: an inverted active continental margin basin, Earth-Sci. Rev., 159, 82, 10.1016/j.earscirev.2016.05.004
Wang, 2018, Intensified East Asian summer monsoon and associated precipitation mode shift under the 1.5 degrees C global warming target, Adv. Clim. Chang. Res., 9, 102, 10.1016/j.accre.2017.12.002
Wang, 2014, Paleo-CO2 variation trends and the cretaceous greenhouse climate, Earth-Sci. Rev., 129, 136, 10.1016/j.earscirev.2013.11.001
Wilcox, 2020, Accelerated increases in global and Asian summer monsoon precipitation from future aerosol reductions, Atmos. Chem. Phys., 20, 11955, 10.5194/acp-20-11955-2020
Wilf, 2003, Correlated terrestrial and marine evidence for global climate changes before mass extinction at the Cretaceous-Paleogene boundary, Proc. Natl. Acad. Sci. U. S. A., 100, 599, 10.1073/pnas.0234701100
Woelders, 2017, Latest cretaceous climatic and environmental change in the South Atlantic region, Paleoceanography, 32, 466, 10.1002/2016PA003007
Woelders, 2018, Robust multi-proxy data integration, using late cretaceous paleotemperature records as a case study, Earth Planet. Sci. Lett., 500, 215, 10.1016/j.epsl.2018.08.010
Wu, 2011, Geochronology of the Phanerozoic granitoids in northeastern China, J. Asian Earth Sci., 41, 1, 10.1016/j.jseaes.2010.11.014
Wu, 2014, Cyclostratigraphy and orbital tuning of the terrestrial upper Santonian–Lower Danian in Songliao Basin, northeastern China, Earth Planet. Sci. Lett., 407, 82, 10.1016/j.epsl.2014.09.038
Yang, 2016, Reconstructing early Permian tropical climates from chemical weathering indices, Geol. Soc. Am. Bull., 128, 739, 10.1130/B31371.1
Yang, 2021, CMIP6 Evaluation and Projection of Temperature and Precipitation over China, Adv. Atmos. Sci., 38, 817, 10.1007/s00376-021-0351-4
Zhang, 2009, High-resolution sequence stratigraphic characteristic and favorable hydrocarbon accumulation prediction of Sifangtai to Mingshui formation in the north of Songliao Basin, J. Central South Univer. (Sci. Technol.)., 40, 1679
Zhang, 2018, Deccan volcanism caused coupled pCO2 and terrestrial temperature rises, and pre-impact extinctions in northern China, Geology, 46, 271, 10.1130/G39992.1