Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre

Nature Photonics - Tập 8 Số 11 - Trang 830-834 - 2014
Christian Petersen1, Uffe Møller1, Irnis Kubat1, Binbin Zhou1, Sune Dupont2, Jacob Ramsay2, T.M. Benson3, S. Sujecki3, Nabil Abdel-Moneim3, Zhuoqi Tang3, David Furniss3, Angela B. Seddon3, Ole Bang4
1Department of Photonics Engineering, DTU Fotonik, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
2Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
3George Green Institute for Electromagnetics Research, Faculty of Engineering, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
4NKT Photonics A/S, Blokken 84, DK-3460 Birkerød, Denmark

Tóm tắt

Từ khóa


Tài liệu tham khảo

Schliesser, A., Picqué, N. & Hänsch, T. W. Mid-infrared frequency combs. Nature Photon. 6, 440–449 (2012).

Allen, M. G. Diode laser absorption sensors for gas-dynamic and combustion flows. Meas. Sci. Technol. 9, 545–562 (1998).

Seddon, A. B. A prospective for new mid-infrared medical endoscopy using chalcogenide glasses. Int. J. Appl. Glass Sci. 2, 177–191 (2011).

Eggleton, B. J., Luther-Davies, B. & Richardson, K. Chalcogenide photonics. Nature Photon. 5, 141–148 (2011).

Wegener, J., Wilson, R. H. & Tapp, H. S. Mid-infrared spectroscopy for food analysis: recent new applications and relevant developments in sample presentation methods. Trends Anal. Chem. 18, 85–93 (1999).

Sun, Y. et al. Characterization of an orange acceptor fluorescent protein for sensitized spectral fluorescence resonance energy transfer microscopy using a white-light laser. J. Biomed. Opt. 14, 054009 (2009).

Cimalla, P., Walther, J., Mittasch, M. & Koch, E. Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 µm wavelength range. J. Biomed. Opt. 16, 116020 (2011).

Dunsby, C. & French, P. M. W. in Supercontinuum Generation in Optical Fibers (eds Dudley, J. M. & Taylor, J. R.) 349–366 (Cambridge Univ. Press, 2010).

Domachuk, P. et al. Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs. Opt. Express 16, 7161–7168 (2008).

Thapa, R. et al. Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 µm. Proc. SPIE 8898, 889808 (2013).

Xia, C. et al. 10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 µm with direct pulse pattern modulation. IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).

Moselund, P. M. et al. Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared. Proc. SPIE 8381, 83811A (2012).

Gattass, R. R. et al. All-fiber chalcogenide-based mid-infrared supercontinuum source. Opt. Fiber Technol. 18, 345–348 (2012).

Shiryaev, V. S. & Churbanov, M. F. Trends and prospects for development of chalcogenide fibers for mid-infrared transmission. J. Non-Cryst. Solids 377, 225–230 (2013).

Dupont, S. et al. IR microscopy utilizing intense supercontinuum light source. Opt. Express 20, 4887–4892 (2012).

Slusher, R. E. et al. Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers. J. Opt. Soc. Am. 21, 1146–1155 (2004).

Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006).

Marandi, A. et al. Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 µm. Opt. Express 20, 24218–24225 (2012).

Gao, W. et al. Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber. Opt. Express 21, 1071–1075 (2013).

Yu, Y. et al. A stable, broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide. Laser Photon. Rev. http://dx.doi.org/10.1002/lpor.201400034 (2014).

Yu, Y. et al. Mid-infrared supercontinuum generation in chalcogenides. Opt. Mater. Express 3, 1075 (2013).

Liao, M. et al. Five-octave-spanning supercontinuum generation in fluoride glass. Appl. Phys. Express 6, 032503 (2013).

Pigeon, J. J., Tochitsky, Y. S., Gong, C. & Joshi, C. Supercontinuum generation from 2–20 µm in GaAs pumped by picosecond CO2 laser pulses. Opt. Lett. 39, 3246–3249 (2014).

Kubat, I. et al. Thulium pumped mid-infrared 0.9–9 µm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers. Opt. Express 22, 3959–3967 (2014).

Yuan, W. 2–10 µm mid-infrared supercontinuum generation in As2Se3 photonic crystal fiber. Laser Phys. Lett. 10, 095107 (2013).

Hlubina, P. Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength. J. Eur. Opt. Soc. Rapid Pub. 7, 12017 (2012).

Sojka, L. et al. Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad. Opt. Mater. 36, 1076–1082 (2014).

Sanghera, J. S., Brandon Shaw, L. & Aggarwal, I. D. Chalcogenide glass-fiber-based mid-IR sources and applications. IEEE J. Sel. Top. Quantum Electron. 15, 114–119 (2009).

McCarthy, J. et al. Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission. Appl. Phys. Lett. 103, 151103 (2013).

Price, J. H. V. et al. Supercontinuum generation in non-silica fibers. Opt. Fiber Technol. 18, 327–344 (2012).

Ranka, J. K., Windeler, R. S. & Stentz, A. J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25, 25–27 (2000).

Poletti, F. & Horak, P. Dynamics of femtosecond supercontinuum generation in multimode fibers. Opt. Express 17, 11301–11312 (2009).

Herrmann, J. et al. Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers. Phys. Rev. Lett. 88, 173901 (2002).

Gorbach, A. V. & Skryabin, D. V. Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres. Nature Photon. 1, 653–657 (2007).