Microwave purification of multi-wall carbon nanotubes in gas phase
Tài liệu tham khảo
Wang, 2013, Effect of carbon nanotube length on thermal, electrical and mechanical properties of CNT/bismaleimide composites, Carbon, 53, 145, 10.1016/j.carbon.2012.10.041
Liu, 2015, Interlocked CNT networks with high damping and storage modulus, Carbon, 86, 46, 10.1016/j.carbon.2015.01.014
Hou, 2008, Purification of carbon nanotubes, Carbon, 46, 2003, 10.1016/j.carbon.2008.09.009
Stobinski, 2010, Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods, J. Alloys Compd., 501, 77, 10.1016/j.jallcom.2010.04.032
Reyhani, 2008, The effect of various acids treatment on the purification and electrochemical hydrogen storage of multi-walled carbon nanotubes, J. Power Sources, 183, 539, 10.1016/j.jpowsour.2008.05.039
Ling, 2013, The effect of different order of purification treatments on the purity of multiwalled carbon nanotubes, Appl. Surf. Sci., 276, 159, 10.1016/j.apsusc.2013.03.056
Zhang, 2010, Pressureless sintering of carbon nanotube–Al2O3 composites, J. Eur. Ceram. Soc., 30, 1373, 10.1016/j.jeurceramsoc.2009.12.005
Hanus, 2012, Separation of coiled carbon fibers from an alumina support by microwave-assisted digestion or sonication, Sep. Purif. Technol., 96, 248, 10.1016/j.seppur.2012.06.004
Pełech, 2014, Removal of metal particles from carbon nanotubes using conventional and microwave methods, Sep. Purif. Technol., 136, 105, 10.1016/j.seppur.2014.08.036
Qiu, 2012, Diameter-selective purification of carbon nanotubes by microwave-assisted acid processing, Sep. Purif. Technol., 96, 182, 10.1016/j.seppur.2012.06.001
Kruusenberg, 2011, Effect of purification of carbon nanotubes on their electrocatalytic properties for oxygen reduction in acid solution, Carbon, 49, 4031, 10.1016/j.carbon.2011.05.048
Voitko, 2015, Catalytic performance of carbon nanotubes in H2O2 decomposition: experimental and quantum chemical study, J. Colloid Interface Sci., 437, 283, 10.1016/j.jcis.2014.09.045
MacKenzie, 2011, Optimisation of microwave-assisted acid digestion for the purification of supported carbon nanotubes, Carbon, 49, 4179, 10.1016/j.carbon.2011.05.052
MacKenzie, 2009, A review of carbon nanotube purification by microwave assisted acid digestion, Sep. Purif. Technol., 66, 209, 10.1016/j.seppur.2009.01.017
Huang, 2003, 99.9% purity multi-walled carbon nanotubes by vacuum high-temperature annealing, Carbon, 41, 2585, 10.1016/S0008-6223(03)00330-0
Song, 2009, High-temperature microwave absorption and evolutionary behavior of multiwalled carbon nanotube nanocomposite, Scr. Mater., 61, 201, 10.1016/j.scriptamat.2009.03.048
Vázquez, 2009, Carbon nanotubes and microwaves: interactions, responses, and applications, ACS Nano, 3, 3819, 10.1021/nn901604j
Dresselhaus, 2005, Raman spectroscopy of carbon nanotubes, Phys. Rep., 409, 47, 10.1016/j.physrep.2004.10.006
Gao, 2010, Application of Raman spectroscopy in carbon nanotube-based polymer composites, Chin. Sci. Bull., 55, 3978, 10.1007/s11434-010-4100-9
Wu, 2014, Study on Raman spectra of multi-walled carbon nanotubes with different parameters, Spectrosc. Spectr. Anal., 34, 982
Hou, 2002, Multi-step purification of carbon nanotubes, Carbon, 40, 81, 10.1016/S0008-6223(01)00075-6
Simon, 2012, Capacitive energy storage in nanostructured carbon–electrolyte systems, Acc. Chem. Res., 46, 1094, 10.1021/ar200306b
Liu, 2010, Hydrogen storage in carbon nanotubes revisited, Carbon, 48, 452, 10.1016/j.carbon.2009.09.060
Stonier, 1991, Stealth aircraft and technology from world-war-II to the gulf. 2. History and background, Sampe J., 27, 9
Song, 2009, High-temperature microwave absorption and evolutionary behavior of multiwalled carbon nanotube nanocomposite, Scr. Mater., 61, 201, 10.1016/j.scriptamat.2009.03.048
Wadhawan, 2003, Nanoparticle-assisted microwave absorption by single-wall carbon nanotubes, Appl. Phys. Lett., 83, 2683, 10.1063/1.1615679
Wu, 2003, Chirality-dependent absorption and third-order polarizability spectra in open single-wall carbon nanotubes, Phys. Rev. B, 68, 125402, 10.1103/PhysRevB.68.125402
Choi, 2012, Radar absorbing sandwich construction composed of CNT, PMI foam and carbon/epoxy composite, Compos. Struct., 94, 3002, 10.1016/j.compstruct.2012.04.009
Lin, 2008, Microwave-absorbing properties of Co-filled carbon nanotubes, Mater. Res. Bull., 43, 2697, 10.1016/j.materresbull.2007.10.016
Walton, 2004, Response of magnetic nanoparticles to microwaves, Appl. Phys. Lett., 85, 5367, 10.1063/1.1829771
Paton, 2008, Efficient microwave energy absorption by carbon nanotubes, Carbon, 46, 1935, 10.1016/j.carbon.2008.08.001
Shi, 2008, The effect of multi-wall carbon nanotubes on electromagnetic interference shielding of ceramic composites, Nanotechnology, 19, 255707, 10.1088/0957-4484/19/25/255707
Grimes, 2000, The 500MHz to 5.50GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites, Chem. Phys. Lett., 319, 460, 10.1016/S0009-2614(00)00196-2
Qing, 2010, Epoxy-silicone filled with multi-walled carbon nanotubes and carbonyl iron particles as a microwave absorber, Carbon, 48, 4074, 10.1016/j.carbon.2010.07.014
Peng, 2008, Complex permittivity and microwave absorption properties of carbon nanotubes/polymer composite: a numerical study, Phys. Lett. A, 372, 3714, 10.1016/j.physleta.2008.02.015
Xie, 2012, Effect of oxidation time on the complex permittivity of hollow, porous carbon fibers, Carbon, 50, 2062, 10.1016/j.carbon.2012.01.012
Zhao, 2008, Microwave absorbing property and complex permittivity and permeability of epoxy composites containing Ni-coated and Ag filled carbon nanotubes, Compos. Sci. Technol., 68, 2902, 10.1016/j.compscitech.2007.10.006
Ding, 2006, Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), Int. J. Heat Mass Transf., 49, 240, 10.1016/j.ijheatmasstransfer.2005.07.009
Liu, 2011, Study on the electrode materials of electrochemical capacitor, Int. J. Chem., 3, p198, 10.5539/ijc.v3n2p198
Liu, 2008, Microwave-assisted acid digestion of alumina-supported carbon nanotubes, Sep. Purif. Technol., 62, 602, 10.1016/j.seppur.2008.03.016