Microwave plasma enhancement of multiphase flames: On-demand control of solid propellant burning rate

Combustion and Flame - Tập 199 - Trang 14-23 - 2019
Stuart J. Barkley1, Keke Zhu1, Joel E. Lynch1, James B. Michael1, Travis R. Sippel1
1Department of Mechanical Engineering, Iowa State University, 2025 Black Engineering Building, Ames, IA 50011, USA

Tài liệu tham khảo

Fabignon, 2003, Instabilities and pressure oscillations in solid rocket motors, Aerosp. Sci. Technol., 7, 191, 10.1016/S1270-9638(02)01194-X Chakravarthy, 2004, Intermittent burning of ammonium perchlorate–hydrocarbon binder monomodal matrixes, sandwiches, and propellants, J. Propuls. Power, 20, 101, 10.2514/1.9236 Parr, 2000, Optical diagonsitcs of solid-propellant flame structure, 381 Culick, 2006 Sawka, 2005, Solid state digital propulsion cluster thrusters for small satellites using high performance electrically controlled extinguishable solid propellants Li, 2005, Plasma ignition and combustion of JA2 propellant, J. Propuls. Power, 21, 44, 10.2514/1.5866 Li, 2006, Recombination of electrothermal plasma and decomposition of plasma-exposed propellants, J. Propuls. Power, 22, 1353, 10.2514/1.17685 Keidar, 2006, Ablation study in the capillary discharge of an electrothermal gun, J. Appl. Phys., 99, 1, 10.1063/1.2174111 Alimi, 2008, Mechanism of solid propellant combustion submitted to a high plasma flux, Propellants Explos. Pyrotech., 33, 118, 10.1002/prep.200800215 Woodley, 1996, Apparent enhanced burn rates of solid propellants due to plasmas, 153 Koleczko, 2001, Plasma ignition and combustion, Propellants Explos. Pyrotech., 26, 75, 10.1002/1521-4087(200104)26:2<75::AID-PREP75>3.0.CO;2-Q Birk, 2000, Interrupted-burning tests of plasma-ignited JA2 and M30 grains in a closed chamber, Propellants Explos. Pyrotech., 25, 133, 10.1002/1521-4087(200006)25:3<133::AID-PREP133>3.0.CO;2-G Porwitzky, 2007, On the mechanism of energy transfer in the plasma-propellant interaction, Propellants Explos. Pyrotech., 32, 385, 10.1002/prep.200700042 Li, 2012, Interaction features of different propellants under plasma impingement, J. Appl. Phys., 112, 1 Scalabrin, 2007, Chemically reacting plasma jet expansion simulation for application to electrothermal chemical guns Hasue, 1990, Initiation of some energetic materials by microwave heating, Propellants Explos. Pyrotech., 15, 181, 10.1002/prep.19900150502 Daily, 2013, X-band microwave properties and ignition predictions of neat explosives, Propellants Explos. Pyrotech., 38, 810, 10.1002/prep.201300068 Higginbotham Duque, 2014, Complex microwave permittivity of secondary high explosives, Propellants Explos. Pyrotech., 39, 275, 10.1002/prep.201300032 Perry, 2008, Electromagnetically induced localized ignition in secondary high explosives, J. Appl. Phys., 104, 1, 10.1063/1.3002421 Vargas, 2016, Advanced susceptors for microwave heating of energetic materials, Mater. Des., 90, 47, 10.1016/j.matdes.2015.10.110 Starikovskaia, 2006, Plasma assisted ignition and combustion, J. Phys. D: Appl. Phys., 39, R265, 10.1088/0022-3727/39/16/R01 Ju, 2015, Plasma assisted combustion: dynamics and chemistry, Prog. Energy Combust. Sci., 48, 21, 10.1016/j.pecs.2014.12.002 Michael, 2013, Sustained propagation of ultra-lean methane/air flames with pulsed microwave energy deposition, Combust. Flame, 160, 796, 10.1016/j.combustflame.2012.12.006 Shuler, 1954, A microwave investigation of the ionization of hydrogen-oxygen and acetylene-oxygen flames a microwave investigation of the ionization of hydrogen-oxygen and acetylene-oxygen flames, J. Chem. Phys., 22, 491, 10.1063/1.1740095 Raizer, 1991 Wardt, 1978, A theoretical study of the microwave heating of a cylindrical shell, flame-front electron plasma in an internal combustion engine, Combust. Flame, 32, 57, 10.1016/0010-2180(78)90080-9 Axford, 1995, lonisation in premixed fuel-lean flames of H2, O2, and N2. Part 2. Ions from alkali-metal additives, J. Chem. Soc. Faraday Trans., 91, 835, 10.1039/FT9959100835 COMSOL Inc., COMSOL Multiphysics, Release 5.0, (2014). Balanis, 2012 Green, 2001, Electronic excitation temperature profiles in an air microwave plasma torch, IEEE Trans. Plasma Sci., 29, 399, 10.1109/27.922753 Griem, 2005 Kramida Weise, 1969 Gordon, 1994 Hagelaar, 2005, Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models, Plasma Sources Sci. Technol., 14, 722, 10.1088/0963-0252/14/4/011 Pancheshnyi, 2012, The LXCat project: electron scattering cross sections and swarm parameters for low temperature plasma modeling, Chem. Phys., 398, 148, 10.1016/j.chemphys.2011.04.020 Edwards, 1988 Hammack, 2011, Direct-coupled plasma-assisted combustion using a microwave waveguide torch, IEEE Trans. Plasma Sci., 39, 3300, 10.1109/TPS.2011.2161778 Sutton, 1989, Microwave processing of ceramic materials, Am. Ceram. Soc. Bull., 68, 376 Kitchen, 2014, Modern microwave methods in solid-state inorganic materials chemistry: from fundamentals to manufacturing, Chem. Rev., 114, 1170, 10.1021/cr4002353 Wang, 2008, The three-dimensional numerical simulation of aluminized composite solid propellant combustion, Combust. Theory Model., 12, 45, 10.1080/13647830701395099 Metaxas, 1983 Jos, 2017, Ammonium nitrate as an eco–friendly oxidizer for composite solid propellants: promises and challenges, Crit. Rev. Solid State Mater. Sci., 42, 470, 10.1080/10408436.2016.1244642