Microwave plasma enhancement of multiphase flames: On-demand control of solid propellant burning rate
Tài liệu tham khảo
Fabignon, 2003, Instabilities and pressure oscillations in solid rocket motors, Aerosp. Sci. Technol., 7, 191, 10.1016/S1270-9638(02)01194-X
Chakravarthy, 2004, Intermittent burning of ammonium perchlorate–hydrocarbon binder monomodal matrixes, sandwiches, and propellants, J. Propuls. Power, 20, 101, 10.2514/1.9236
Parr, 2000, Optical diagonsitcs of solid-propellant flame structure, 381
Culick, 2006
Sawka, 2005, Solid state digital propulsion cluster thrusters for small satellites using high performance electrically controlled extinguishable solid propellants
Li, 2005, Plasma ignition and combustion of JA2 propellant, J. Propuls. Power, 21, 44, 10.2514/1.5866
Li, 2006, Recombination of electrothermal plasma and decomposition of plasma-exposed propellants, J. Propuls. Power, 22, 1353, 10.2514/1.17685
Keidar, 2006, Ablation study in the capillary discharge of an electrothermal gun, J. Appl. Phys., 99, 1, 10.1063/1.2174111
Alimi, 2008, Mechanism of solid propellant combustion submitted to a high plasma flux, Propellants Explos. Pyrotech., 33, 118, 10.1002/prep.200800215
Woodley, 1996, Apparent enhanced burn rates of solid propellants due to plasmas, 153
Koleczko, 2001, Plasma ignition and combustion, Propellants Explos. Pyrotech., 26, 75, 10.1002/1521-4087(200104)26:2<75::AID-PREP75>3.0.CO;2-Q
Birk, 2000, Interrupted-burning tests of plasma-ignited JA2 and M30 grains in a closed chamber, Propellants Explos. Pyrotech., 25, 133, 10.1002/1521-4087(200006)25:3<133::AID-PREP133>3.0.CO;2-G
Porwitzky, 2007, On the mechanism of energy transfer in the plasma-propellant interaction, Propellants Explos. Pyrotech., 32, 385, 10.1002/prep.200700042
Li, 2012, Interaction features of different propellants under plasma impingement, J. Appl. Phys., 112, 1
Scalabrin, 2007, Chemically reacting plasma jet expansion simulation for application to electrothermal chemical guns
Hasue, 1990, Initiation of some energetic materials by microwave heating, Propellants Explos. Pyrotech., 15, 181, 10.1002/prep.19900150502
Daily, 2013, X-band microwave properties and ignition predictions of neat explosives, Propellants Explos. Pyrotech., 38, 810, 10.1002/prep.201300068
Higginbotham Duque, 2014, Complex microwave permittivity of secondary high explosives, Propellants Explos. Pyrotech., 39, 275, 10.1002/prep.201300032
Perry, 2008, Electromagnetically induced localized ignition in secondary high explosives, J. Appl. Phys., 104, 1, 10.1063/1.3002421
Vargas, 2016, Advanced susceptors for microwave heating of energetic materials, Mater. Des., 90, 47, 10.1016/j.matdes.2015.10.110
Starikovskaia, 2006, Plasma assisted ignition and combustion, J. Phys. D: Appl. Phys., 39, R265, 10.1088/0022-3727/39/16/R01
Ju, 2015, Plasma assisted combustion: dynamics and chemistry, Prog. Energy Combust. Sci., 48, 21, 10.1016/j.pecs.2014.12.002
Michael, 2013, Sustained propagation of ultra-lean methane/air flames with pulsed microwave energy deposition, Combust. Flame, 160, 796, 10.1016/j.combustflame.2012.12.006
Shuler, 1954, A microwave investigation of the ionization of hydrogen-oxygen and acetylene-oxygen flames a microwave investigation of the ionization of hydrogen-oxygen and acetylene-oxygen flames, J. Chem. Phys., 22, 491, 10.1063/1.1740095
Raizer, 1991
Wardt, 1978, A theoretical study of the microwave heating of a cylindrical shell, flame-front electron plasma in an internal combustion engine, Combust. Flame, 32, 57, 10.1016/0010-2180(78)90080-9
Axford, 1995, lonisation in premixed fuel-lean flames of H2, O2, and N2. Part 2. Ions from alkali-metal additives, J. Chem. Soc. Faraday Trans., 91, 835, 10.1039/FT9959100835
COMSOL Inc., COMSOL Multiphysics, Release 5.0, (2014).
Balanis, 2012
Green, 2001, Electronic excitation temperature profiles in an air microwave plasma torch, IEEE Trans. Plasma Sci., 29, 399, 10.1109/27.922753
Griem, 2005
Kramida
Weise, 1969
Gordon, 1994
Hagelaar, 2005, Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models, Plasma Sources Sci. Technol., 14, 722, 10.1088/0963-0252/14/4/011
Pancheshnyi, 2012, The LXCat project: electron scattering cross sections and swarm parameters for low temperature plasma modeling, Chem. Phys., 398, 148, 10.1016/j.chemphys.2011.04.020
Edwards, 1988
Hammack, 2011, Direct-coupled plasma-assisted combustion using a microwave waveguide torch, IEEE Trans. Plasma Sci., 39, 3300, 10.1109/TPS.2011.2161778
Sutton, 1989, Microwave processing of ceramic materials, Am. Ceram. Soc. Bull., 68, 376
Kitchen, 2014, Modern microwave methods in solid-state inorganic materials chemistry: from fundamentals to manufacturing, Chem. Rev., 114, 1170, 10.1021/cr4002353
Wang, 2008, The three-dimensional numerical simulation of aluminized composite solid propellant combustion, Combust. Theory Model., 12, 45, 10.1080/13647830701395099
Metaxas, 1983
Jos, 2017, Ammonium nitrate as an eco–friendly oxidizer for composite solid propellants: promises and challenges, Crit. Rev. Solid State Mater. Sci., 42, 470, 10.1080/10408436.2016.1244642