Microwave-assisted pyrolysis of agricultural residues: current scenario, challenges, and future direction
Tóm tắt
In the agricultural sector, huge quantities of agricultural residues are being generated every year. The valorization of the underutilized agricultural residues through microwave-assisted pyrolysis (MAP) is highlighted in recent years. This article focuses on the current status for MAP of agricultural residues with the possible applications of the pyrolysis products in the agricultural sector and the challenges to make the process more compatible, acceptable, and sustainable along with its future directions to gain more economic benefits even at small-scale applications. The findings of the studies undertaken by the various researchers reveal that the yields (biochar, bio-oil, and gas) obtained from the MAP vary according to feedstock and pyrolysis conditions. The product, biochar, has several applications proven successfully in the agriculture. Bio-oil product cannot be used directly either as a biofuel or in agriculture but wood vinegar, extracted easily and cheaply from it, can be utilized directly by the crop growers in farming. Wood vinegar has been proved to be a useful and environment-friendly product for many applications, particularly in the agriculture. The gas derived from MAP can also be used to operate the pyrolysis system or may be used as a biofuel especially for thermal energy applications in rural areas. Small-scale MAP plants may be economically viable and more favorable in the agricultural sector than the large-scale plants. Integrating other source of renewable energy, as an input power for operating the MAP process, may also be a better option to make the process more reliable, economic, and environmental friendly.
Tài liệu tham khảo
Adjin-Tetteh M, Asiedu N, Dodoo-Arhin D, Karam A, Amaniampong PN (2018) Thermochemical conversion and characterization of cocoa pod husks a potential agricultural waste from Ghana. Ind Crops Products 119:304–312. https://doi.org/10.1016/j.indcrop.2018.02.060
Aguirre JL, Baena J, Martín MT, Nozal L, González S, Manjón JL, Peinado M (2020) Composition, ageing and herbicidal properties of wood vinegar obtained through fast biomass pyrolysis. Energies 13:2418. https://doi.org/10.3390/en13102418
Ahadiyat YR, Hadi SN, Herliana O (2018) Application of wood vinegar coconut shell and NPK fertilizer to maintain sustainable agriculture of upland rice production. J Deg Min Lands Manag 5(3):1245. https://doi.org/10.15243/JDMLM.2018.053.1245
Alam SN, Khalid Z, Singh B, Guldhe A, Shahi DK, Bauddh K (2020) Application of biochar in agriculture: a sustainable approach for enhanced plant growth, productivity and soil health. In: Bauddh K, Kumar S, Singh R, Korstad J (eds) Ecological and practical applications for sustainable agriculture. Springer, Singapore, pp 107–130. https://doi.org/10.1007/978-981-15-3372-3_6
Andrade LA, Batista FR, Lira TS, Barrozo MA, Vieira LG (2018) Characterization and product formation during the catalytic and non-catalytic pyrolysis of the green microalgae Chlamydomonas reinhardtii. Renew Energy 119:731–740. https://doi.org/10.1016/j.renene.2017.12.056
Aryal N, Kvist T, Ammam F, Pant D, Ottosen LD (2018) An overview of microbial biogas enrichment. Bioresour Technol 264:359–369. https://doi.org/10.1016/j.biortech.2018.06.013
Asomaning J, Mussone P, Bressler DC (2014) Thermal cracking of free fatty acids in inert and light hydrocarbon gas atmospheres. Fuel 126:250–255. https://doi.org/10.1016/j.fuel.2014.02.069
Asomaning J, Haupt S, Chae M, Bressler DC (2018) Recent developments in microwave-assisted thermal conversion of biomass for fuels and chemicals. Renew Sustain Energy Rev 92:642–657. https://doi.org/10.1016/j.rser.2018.04.084
Aziz SM, Wahi R, Ngaini Z, Hamdan S (2013) Bio-oils from microwave pyrolysis of agricultural wastes. Fuel Process Technol 106:744–750. https://doi.org/10.1016/j.fuproc.2012.10.011
Baronti S, Alberti G, Delle Vedove G, Di Gennaro F, Fellet G, Genesio L, Miglietta F, Peressotti A, Vaccari FP (2010) The biochar option to improve plant yields: first results from some field and pot experiments in Italy. Ital J Agron 31:3–12. https://doi.org/10.4081/ija.2010.3
Bartoli M, Rosi L, Giovannelli A, Frediani P, Frediani M (2020) Characterization of bio-oil and bio-char produced by low-temperature microwave-assisted pyrolysis of olive pruning residue using various absorbers. Waste Manag Res 38(2):213–225. https://doi.org/10.1177/0734242X19865342
Basu P (2018) Pyrolysis. In: Biomass gasification, pyrolysis and torrefaction: practical design and theory. Academic Press, London, pp 155–187. http://doi.org/10.1016/B978-0-12-812992-0.00005-4
Beneroso D, Monti T, Kostas ET, Robinson J (2017) Microwave pyrolysis of biomass for bio-oil production: scalable processing concepts. Chem Eng J 316:481–498. https://doi.org/10.1016/j.cej.2017.01.130
Bhuvaneshwari S, Hettiarachchi H, Meegoda JN (2019) Crop residue burning in India: policy challenges and potential solutions. Int J Environ Res Public Health 16:832. https://doi.org/10.3390/ijerph16050832
Borges FC, Du Z, Xie Q, Trierweiler JO, Cheng Y, Wan Y, Liu Y, Zhu R, Lin X, Chen P, Ruan R (2014) Fast microwave assisted pyrolysis of biomass using microwave absorbent. Bioresour Technol 156:267–274. https://doi.org/10.1016/j.biortech.2014.01.038
Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94. https://doi.org/10.1016/j.biombioe.2011.01.048
Bu Q, Lei H, Ren S, Wang L, Holladay J, Zhang Q, Tang J, Ruan R (2011) Phenol and phenolics from lignocellulosic biomass by catalytic microwave pyrolysis. Bioresour Technol 102(13):7004–7007. https://doi.org/10.1016/j.biortech.2011.04.025
Bundhoo ZM (2018) Microwave-assisted conversion of biomass and waste materials to biofuels. Renew Sustain Energy Rev 82:1149–1177. https://doi.org/10.1016/j.rser.2017.09.066
Cha JS, Park SH, Jung SC, Ryu C, Jeon JK, Shin MC, Park YK (2016) Production and utilization of biochar: a review. J Ind Eng Chem 40:1–5. https://doi.org/10.1016/j.jiec.2016.06.002
Chaos M, Dryer FL (2008) Syngas combustion kinetics and applications. Combust Sci Technol 180(6):1053–1096. https://doi.org/10.1080/00102200801963011
Chen MQ, Wang J, Zhang MX, Chen MG, Zhu XF, Min FF, Tan ZC (2008) Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating. J Anal Appl Pyrolysis 82(1):145–150. https://doi.org/10.1016/j.jaap.2008.03.001
Chen P, Xie Q, Addy M, Zhou W, Liu Y, Wang Y, Cheng Y, Li K, Ruan R (2016) Utilization of municipal solid and liquid wastes for bioenergy and bioproducts production. Bioresour Technol 215:163–172. https://doi.org/10.1016/j.biortech.2016.02.094
Chen T, Luo L, Deng S, Shi G, Zhang S, Zhang Y, Deng O, Wang L, Zhang J, Wei L (2018) Sorption of tetracycline on H3PO4 modified biochar derived from rice straw and swine manure. Bioresour Technol 267:431–437. https://doi.org/10.1016/j.biortech.2018.07.074
Chen L, Yu Z, Xu H, Wan K, Liao Y, Ma X (2019) Microwave-assisted co-pyrolysis of Chlorella vulgaris and wood sawdust using different additives. Bioresour Technol 273:34–39. https://doi.org/10.1016/j.biortech.2018.10.086
De Wild P, Reith H, Heeres E (2011) Biomass pyrolysis for chemicals. Biofuels 2:185–208. https://doi.org/10.4155/bfs.10.88
Doucet J, Laviolette JP, Farag S, Chaouki J (2014) Distributed microwave pyrolysis of domestic waste. Waste Biomass Valor 5(1):1. https://doi.org/10.1007/s12649-013-9216-0
Du Z, Li Y, Wang X, Wan Y, Chen Q, Wang C, Lin X, Liu Y, Chen P, Ruan R (2011) Microwave-assisted pyrolysis of microalgae for biofuel production. Bioresour Technol 102:4890–4896. https://doi.org/10.1016/j.biortech.2011.01.055
Du H, Zhong Z, Zhang B, Shi K, Li Z (2020) Comparative study on pyrolysis of bamboo in microwave pyrolysis-reforming reaction by binary compound impregnation and chemical liquid deposition modified HZSM-5. J Environ Sci 94:186–196. https://doi.org/10.1016/j.jes.2020.03.014
Ethaib S, Omar R, Kamal SMM, Awang Biak DR, Zubaidi SL (2020) Microwave-assisted pyrolysis of biomass waste: a mini review. Processes 8(9):1190. https://doi.org/10.3390/pr8091190
Evjen B (2013) Final report summary-MICROFUEL (mobile microwave pyrolysis plant turns biomass into fuel locally), Norway. http://www.micro-fuel.eu. https://cordis.europa.eu/project/id/218454/reporting
Fang Z, Gao Y, Bolan N, Shaheen SM, Xu S, Wu X, Xu X, Hu H, Lin J, Zhang F, Li J (2020) Conversion of biological solid waste to graphene-containing biochar for water remediation: a critical review. Chem Eng J 390:124611. https://doi.org/10.1016/j.cej.2020.124611
Fernández-Naveira Á, Veiga MC, Kennes C (2017) H-B-E (hexanol-butanol-ethanol) fermentation for the production of higher alcohols from syngas/waste gas. J Chem Technol Biotech 92(4):712–731. https://doi.org/10.1002/jctb.5194
Fodah AEM, Ghosal MK, Behera D (2020a) Studies on microwave-assisted pyrolysis of rice straw using solar photovoltaic power. BioEnergy Res. https://doi.org/10.1007/s12155-020-10172-1
Fodah AME, Ghosal MK, Behera D (2020b) Bio-oil and biochar from microwave-assisted catalytic pyrolysis of corn stover using sodium carbonate catalyst. J Energy Inst. https://doi.org/10.1016/j.joei.2020.09.008
Fodah AE, Ghosal MK, Behera D (2020c) Solar-powered microwave pyrolysis of corn stover for value-added products and process techno-economic assessment. Int J Energy Res. https://doi.org/10.1002/er.6192
Foong SY, Liew RK, Yang Y, Cheng YW, Yek PN, Mahari WA, Lee XY, Han CS, Vo DV, Van Le Q, Aghbashlo M (2020) Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: progress, challenges, and future directions. Chem Eng J 389:124401. https://doi.org/10.1016/j.cej.2020.124401
Frankel ML, Bhuiyan TI, Veksha A, Demeter MA, Layzell DB, Helleur RJ, Hill JM, Turner RJ (2016) Removal and biodegradation of naphthenic acids by biochar and attached environmental biofilms in the presence of co-contaminating metals. Bioresour Technol 216:352–361. https://doi.org/10.1016/j.biortech.2016.05.084
Fuad MA, Hasan MF, Ani FN (2019) Microwave torrefaction for viable fuel production: a review on theory, affecting factors, potential and challenges. Fuel 253:512–526. https://doi.org/10.1016/j.fuel.2019.04.151
Gan YY, Ong HC, Show PL, Ling TC, Chen WH, Yu KL, Abdullah R (2018) Torrefaction of microalgal biochar as potential coal fuel and application as bio-adsorbent. Energy Convers Manag 165:152–162. https://doi.org/10.1016/j.enconman.2018.03.046
Ge S, Yek PN, Cheng YW, Xia C, Mahari WA, Liew RK, Peng W, Yuan TQ, Tabatabaei M, Aghbashlo M, Sonne C (2020) Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: a batch to continuous approach. Renew Sustain Energy Rev 135:110148. https://doi.org/10.1016/j.rser.2020.110148
Ghosal M, Mahapatra N, Sahoo N, Rout P (2016) A study on preparation and heating value of bio-coal from green coconut shell for domestic cooking fuel. Ecol Environ Conserv 22:91–97
Guo M, He Z, Uchimiya SM (2016) Introduction to biochar as an agricultural and environmental amendment. In: Guo M, He Z, Uchimiya SM (eds) Agricultural and environmental applications of biochar: advances Barriers, vol 63. Wiley, Hoboken, pp 1–4. https://doi.org/10.2136/sssaspecpub63.2014.0034
Guo M, Xiao P, Li H (2019) Valorization of agricultural byproducts through conversion to biochar and bio-oil. In: Simpson BK, Aryee ANA, Toldrá F (eds) Byproducts from agriculture and fisheries: adding value for food, feed, pharma, and fuels. Wiley, Hoboken, pp 501–522. https://doi.org/10.1002/9781119383956.ch21
Haeldermans T, Campion L, Kuppens T, Vanreppelen K, Cuypers A, Schreurs S (2020) A comparative techno-economic assessment of biochar production from different residue streams using conventional and microwave pyrolysis. Bioresour Technol 318:124083. https://doi.org/10.1016/j.biortech.2020.124083
Hardie M, Clothier B, Bound S, Oliver G, Close D (2014) Does biochar influence soil physical properties and soil water availability? Plant Soil 376(1–2):347–361. https://doi.org/10.1007/s11104-013-1980-x
Hesas RH, Daud WM, Sahu JN, Arami-Niya A (2013) The effects of a microwave heating method on the production of activated carbon from agricultural waste: a review. J Anal Appl Pyrol 100:1–11. https://doi.org/10.1016/j.jaap.2012.12.019
Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807. https://doi.org/10.1126/science.1137016
Hossain MA, Ganesan P, Jewaratnam J, Chinna K (2017) Optimization of process parameters for microwave pyrolysis of oil palm fiber (OPF) for hydrogen and biochar production. Energy Convers Manag 133:349–362. https://doi.org/10.1016/j.enconman.2016.10.046
Huang YF, Kuan WH, Lo SL, Lin CF (2008) Total recovery of resources and energy from rice straw using microwave-induced pyrolysis. Bioresour Technol 99(17):8252–8258. https://doi.org/10.1016/j.biortech.2008.03.026
Huang YF, Kuan WH, Lo SL, Lin CF (2010) Hydrogen-rich fuel gas from rice straw via microwave-induced pyrolysis. Bioresour Technol 101(6):1968–1973. https://doi.org/10.1016/j.biortech.2009.09.073
Huang YF, Kuan WH, Chang CC, Tzou YM (2013) Catalytic and atmospheric effects on microwave pyrolysis of corn stover. Bioresour Technol 131:274–280. https://doi.org/10.1016/j.biortech.2012.12.177
Huang YF, Chiueh PT, Shih CH, Lo SL, Sun L, Zhong Y, Qiu C (2015a) Microwave pyrolysis of rice straw to produce biochar as an adsorbent for CO2 capture. Energy 84:75–82. https://doi.org/10.1016/j.energy.2015.02.026
Huang YF, Chiueh PT, Kuan WH, Lo SL (2015b) Effects of lignocellulosic composition and microwave power level on the gaseous product of microwave pyrolysis. Energy 89:974–981. https://doi.org/10.1016/j.energy.2015.06.035
Huang YF, Chiueh PT, Lo SL (2016) A review on microwave pyrolysis of lignocellulosic biomass. Sustain Environ Res 26(3):103–109. https://doi.org/10.1016/j.serj.2016.04.012
Huang YF, Kuan WH, Chang CY (2018) Effects of particle size, pretreatment, and catalysis on microwave pyrolysis of corn stover. Energy 143:696–703. https://doi.org/10.1016/j.energy.2017.11.022
International Energy Agency (EIA) (2018) CO2 emissions from fuel combustion and renewables information. https://www.iea.org/statistics/co2emissions/. https://www.iea.org/statistics/renewables/
Ismail K, Ishak MA, Ab Ghani Z, Abdullah MF, Safian MT, Idris SS, Tahiruddin S, Yunus MF, Hakimi NI (2013) Microwave-assisted pyrolysis of palm kernel shell: optimization using response surface methodology (RSM). Renew Energy 55:357–365. https://doi.org/10.1016/j.renene.2012.12.042
Jahirul MI, Rasul MG, Chowdhury AA, Ashwath N (2012) Biofuels production through biomass pyrolysis—a technological review. Energies 5:4952–5001. https://doi.org/10.3390/en5124952
Kambo HS, Dutta A (2015) A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sustain Energy Rev 45:359–378. https://doi.org/10.1016/j.rser.2015.01.050
Khorram MS, Lin D, Zhang Q, Zheng Y, Fang H, Yu Y (2017) Effects of aging process on adsorption–desorption and bioavailability of fomesafen in an agricultural soil amended with rice hull biochar. J Environ Sci 56:180–191. https://doi.org/10.1016/j.jes.2016.09.012
Kiarie-Makara MW, Yoon HS, Lee DK (2010) Repellent efficacy of wood vinegar against Culex pipiens pallens and Aedes togoi (Diptera: Culicidae) under laboratory and semi-field conditions. Entomol Res 40(2):97–103. https://doi.org/10.1111/j.1748-5967.2010.00265.x
Kuan WH, Huang YF, Chang CC, Lo SL (2013) Catalytic pyrolysis of sugarcane bagasse by using microwave heating. Bioresour Technol 146:324–329. https://doi.org/10.1016/j.biortech.2013.07.079
Lam SS, Chase HA (2012) A review on waste to energy processes using microwave pyrolysis. Energies 5(10):4209–4232. https://doi.org/10.3390/en5104209
Lam SS, Mahari WA, Ok YS, Peng W, Chong CT, Ma NL, Chase HA, Liew Z, Yusup S, Kwon EE, Tsang DC (2019) Microwave vacuum pyrolysis of waste plastic and used cooking oil for simultaneous waste reduction and sustainable energy conversion: recovery of cleaner liquid fuel and techno-economic analysis. Renew Sustain Energy Rev 115:109359. https://doi.org/10.1016/j.rser.2019.109359
Lawas KI, Doliente S, Carpio R, Migo V, Alfafara C (2019) Parametric study of corn cob biochar (CCBc) yield via microwave pyrolysis. EDP Sciences. In: MATEC web of conferences, vol 268, p 04005. https://doi.org/10.1051/matecconf/201926804005
Lei H, Ren S, Julson J (2009) The effects of reaction temperature and time and particle size of corn stover on microwave pyrolysis. Energy Fuels 23(6):3254–3261. https://doi.org/10.1021/ef9000264
Li J, Dai J, Liu G, Zhang H, Gao Z, Fu J, He Y, Huang Y (2016a) Biochar from microwave pyrolysis of biomass: a review. Biomass Bioenergy 94:228–244. https://doi.org/10.1016/j.biombioe.2016.09.010
Li H, Li X, Liu L, Li K, Wang X, Li H (2016b) Experimental study of microwave-assisted pyrolysis of rice straw for hydrogen production. Int J Hydrogen Energy 41(4):2263–2267. https://doi.org/10.1016/j.ijhydene.2015.11.137
Li K, Zhang L, Zhu L, Zhu X (2017) Comparative study on pyrolysis of lignocellulosic and algal biomass using pyrolysis-gas chromatography/mass spectrometry. Bioresour Technol 234:48–52. https://doi.org/10.1016/j.biortech.2017.03.014
Liew RK, Chai C, Yek PN, Phang XY, Chong MY, Nam WL, Su MH, Lam WH, Ma NL, Lam SS (2019) Innovative production of highly porous carbon for industrial effluent remediation via microwave vacuum pyrolysis plus sodium-potassium hydroxide mixture activation. J Clean Prod 208:1436–1445. https://doi.org/10.1016/j.jclepro.2018.10.214
Lin BJ, Chen WH (2015) Sugarcane bagasse pyrolysis in a carbon dioxide atmosphere with conventional and microwave-assisted heating. Front Energy Res 3:4. https://doi.org/10.3389/fenrg.2015.00004
Lin YC, Wu TY, Liu WY, Hsiao YH (2014) Production of hydrogen from rice straw using microwave-induced pyrolysis. Fuel 119:21–26. https://doi.org/10.1016/j.fuel.2013.11.046
Lin BJ, Silveira EA, Colin B, Chen WH, Lin YY, Leconte F, Pétrissans A, Rousset P, Pétrissans M (2019) Modeling and prediction of devolatilization and elemental composition of wood during mild pyrolysis in a pilot-scale reactor. Ind Crop Prod 131:357–370. https://doi.org/10.1016/j.indcrop.2019.01.065
Liu N, Charrua AB, Weng CH, Yuan X, Ding F (2015) Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: a comparative study. Bioresour Technol 198:55–62. https://doi.org/10.1016/j.biortech.2015.08.129
Liu S, Xie Q, Zhang B, Cheng Y, Liu Y, Chen P, Ruan R (2016) Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst. Bioresour Technol 204:164–170. https://doi.org/10.1016/j.biortech.2015.12.085
Liu S, Zhang Y, Fan L, Zhou N, Tian G, Zhu X, Cheng Y, Wang Y, Liu Y, Chen P, Ruan R (2017) Bio-oil production from sequential two-step catalytic fast microwave-assisted biomass pyrolysis. Fuel 196:261–268. https://doi.org/10.1016/j.fuel.2017.01.116
Luo X, Wang Z, Meki K, Wang X, Liu B, Zheng H, You X, Li F (2019) Effect of co-application of wood vinegar and biochar on seed germination and seedling growth. J Soils Sedim 19(12):3934–3944. https://doi.org/10.1007/s11368-019-02365-9
Mahiuddin M, Tazeen TN, Rafsun ZM, Chhoa M, Ahasanur RM (2020) Characterization of corncob and areca nut stem-based wood vinegar as potential fungicides. Res J Chem Environ 24(1):106–110
Mamaeva A, Tahmasebi A, Tian L, Yu J (2016) Microwave-assisted catalytic pyrolysis of lignocellulosic biomass for production of phenolic-rich bio-oil. Bioresour Technol 211:382–389. https://doi.org/10.1016/j.biortech.2016.03.120
Martín MT, Sanz AB, Nozal L, Castro F, Alonso R, Aguirre JL, González SD, Matía MP, Novella JL, Peinado M, Vaquero JJ (2017) Microwave-assisted pyrolysis of Mediterranean forest biomass waste: bioproduct characterization. J Anal Appl Pyrol 127:278–285. https://doi.org/10.1016/j.jaap.2017.07.024
Martínez JD, Mahkamov K, Andrade RV, Lora EE (2012) Syngas production in downdraft biomass gasifiers and its application using internal combustion engines. Renew Energy 38(1):1–9. https://doi.org/10.1016/j.renene.2011.07.035
Mašek O, Budarin V, Gronnow M, Crombie K, Brownsort P, Fitzpatrick E, Hurst P (2013) Microwave and slow pyrolysis biochar—comparison of physical and functional properties. J Anal Appl Pyrolysis 100:41–48. https://doi.org/10.1016/j.jaap.2012.11.015
Masum SM, Malek M, Mandal MS, Haque MN, Akther Z (2013) Influence of plant extracted pyroligneous acid on transplanted aman rice. J Exp Biosci 4(2):31–34
Miltner A, Wukovits W, Pröll T, Friedl A (2010) Renewable hydrogen production: a technical evaluation based on process simulation. J Clean Prod 18:S51–S62. https://doi.org/10.1016/j.jclepro.2010.05.024
Mohamed BA, Kim CS, Ellis N, Bi X (2016) Microwave-assisted catalytic pyrolysis of switchgrass for improving bio-oil and biochar properties. Bioresour Technol 201:121–132. https://doi.org/10.1016/j.biortech.2015.10.096
Motasemi F, Afzal MT (2013) A review on the microwave-assisted pyrolysis technique. Renew Sustain Energy Rev 28:317–330. https://doi.org/10.1016/j.rser.2013.08.008
Motasemi F, Ani FN (2012) A review on microwave-assisted production of biodiesel. Renew Sustain Energy Rev 16:4719–4733. https://doi.org/10.1016/j.rser.2012.03.069
Mungkunkamchao T, Kesmala T, Pimratch S, Toomsan B, Jothityangkoon D (2013) Wood vinegar and fermented bioextracts: natural products to enhance growth and yield of tomato (Solanum lycopersicum L.). Sci Hortic 154:66–72. https://doi.org/10.1016/j.scienta.2013.02.020
Mushtaq FA, Channa AS, Mat R, Ani FN (2014) Microwave assisted pyrolysis of waste biomass resources for bio-oil production. Appl Mech Mater 554:307–311. https://doi.org/10.4028/www.scientific.net/AMM.554.307
Mutsengerere S, Chihobo CH, Musademba D, Nhapi I (2019) A review of operating parameters affecting bio-oil yield in microwave pyrolysis of lignocellulosic biomass. Renew Sustain Energy Rev 104:328–336. https://doi.org/10.1016/j.rser.2019.01.030
Naeem MA, Khalid M, Aon M, Abbas G, Amjad M, Murtaza B, Khan WU, Ahmad N (2018) Combined application of biochar with compost and fertilizer improves soil properties and grain yield of maize. J Plant Nutr 41(1):112–122. https://doi.org/10.1080/01904167.2017.1381734
Nhuchhen DR, Afzal MT, Dreise T, Salema AA (2018) Characteristics of biochar and bio-oil produced from wood pellets pyrolysis using a bench scale fixed bed, microwave reactor. Biomass Bioenergy 119:293–303. https://doi.org/10.1016/j.biombioe.2018.09.035
Omar R, Robinson JP (2014) Conventional and microwave-assisted pyrolysis of rapeseed oil for bio-fuel production. J Anal Appl Pyrol 105:131–142. https://doi.org/10.1016/j.jaap.2013.10.012
Omoriyekomwan JE, Tahmasebi A, Yu J (2016) Production of phenol-rich bio-oil during catalytic fixed-bed and microwave pyrolysis of palm kernel shell. Bioresour Technol 207:188–196. https://doi.org/10.1016/j.biortech.2016.02.002
Omulo G, Willett S, Seay J, Banadda N, Kabenge I, Zziwa A, Kiggundu N, Books RU, Oer R, Scarda R, Tenders RU (2017) Characterization of slow pyrolysis wood vinegar and tar from banana wastes biomass as potential organic pesticides. J Sustain Dev 10:81–92
Ong HC, Chen WH, Farooq A, Gan YY, Lee KT, Ashokkumar V (2019) Catalytic thermochemical conversion of biomass for biofuel production: a comprehensive review. Renew Sustain Energy Rev 113:109266. https://doi.org/10.1016/j.rser.2019.109266
Pangnakorn U, Kanlaya S, Kuntha C (2012) Effect of wood vinegar for controlling on housefly (Musca domestica L.). Int J Agric Bios Eng 6(5):291–294. https://doi.org/10.5281/zenodo.1054869
Parvez AM, Wu T, Afzal MT, Mareta S, He T, Zhai M (2019a) Conventional and microwave-assisted pyrolysis of gumwood: a comparison study using thermodynamic evaluation and hydrogen production. Fuel Process Technol 184:1–11. https://doi.org/10.1016/j.fuproc.2018.11.007
Parvez AM, Wu T, Hong Y, Chen W, Lester EH, Mareta S, Afzal M (2019b) Gasification reactivity and synergistic effect of conventional and microwave pyrolysis derived algae chars in CO2 atmosphere. J Energy Inst 92(3):730–740. https://doi.org/10.1016/j.joei.2018.02.009
Petter FA, Silva LB, Souza IJ, Magionni K, Pacheco LP, Almeida FA, Pavan BE (2013) Adaptation of the use of pyroligneous acid in control of caterpillars and agronomic performance of the soybean crop. J Agric Sci 5(8):27. https://doi.org/10.5539/jas.v5n8p27
Quin PR, Cowie AL, Flavel RJ, Keen BP, Macdonald LM, Morris SG, Singh BP, Young IM, Van Zwieten L (2014) Oil mallee biochar improves soil structural properties-a study with x-ray micro-CT. Agric Ecosyst Environ 191:142–149. https://doi.org/10.1016/j.agee.2014.03.022
Rauch R, Hrbek J, Hofbauer H (2014) Biomass gasification for synthesis gas production and applications of the syngas. Wiley Interdiscip Rev Energy Environ 3(4):343–362. https://doi.org/10.1002/wene.97
Ravikumar C, Kumar PS, Subhashni SK, Tejaswini PV, Varshini V (2017) Microwave assisted fast pyrolysis of corn cob, corn stover, saw dust and rice straw: experimental investigation on bio-oil yield and high heating values. Sustain Mater Technol 11:19–27. https://doi.org/10.1016/j.susmat.2016.12.003
Ravindra K, Singh T, Mor S (2019) Emissions of air pollutants from primary crop residue burning in India and their mitigation strategies for cleaner emissions. J Clean Prod 208:261–273. https://doi.org/10.1016/j.jclepro.2018.10.031
Robinson J, Dodds C, Stavrinides A, Kingman S, Katrib J, Wu Z, Medrano J, Overend R (2015) Microwave pyrolysis of biomass: control of process parameters for high pyrolysis oil yields and enhanced oil quality. Energy Fuels 29(3):1701–1709. https://doi.org/10.1021/ef502403x
Ruan RR, Chen P, Hemmingsen R, Morey V, Tiffany D (2008) Size matters: small distributed biomass energy production systems for economic viability. Int J Agric Biol Eng 1(1):64–68. https://doi.org/10.3965/j.issn.1934-6344.2008.01.064-068
Sahoo D, Remya N (2020) Influence of operating parameters on the microwave pyrolysis of rice husk: biochar yield, energy yield, and property of biochar. Biomass Conv Bioref. https://doi.org/10.1007/s13399-020-00914-8
Saifuddin N, Salman B, Refal H, Ong M (2017) Microwave pyrolysis of lignocellulosic biomass—a contribution to power Africa. Energy Sustain Soc. https://doi.org/10.1186/s13705-017-0126-z
Salema AA, Afzal MT, Bennamoun L (2017) Pyrolysis of corn stalk biomass briquettes in a scaled-up microwave technology. Bioresour Technol 233:353–362. https://doi.org/10.1016/j.biortech.2017.02.113
Sangsuk S, Suebsiri S, Puakhom P (2018) The metal kiln with heat distribution pipes for high quality charcoal and wood vinegar production. Energy Sustain Dev 47:149–157. https://doi.org/10.1016/j.esd.2018.10.002
Sarkhot DV, Ghezzehei TA, Berhe AA (2013) Effectiveness of biochar for sorption of ammonium and phosphate from dairy effluent. J Environ Qual 42(5):1545–1554. https://doi.org/10.2134/jeq2012.0482
Shi K, Yan J, Menéndez JA, Luo X, Yang G, Chen Y, Lester E, Wu T (2020) Production of H2-rich syngas from lignocellulosic biomass using microwave-assisted pyrolysis coupled with activated carbon enabled reforming. Front Chem 8:3. https://doi.org/10.3389/fchem.2020.00003
Shukla N, Sahoo D, Remya N (2019) Biochar from microwave pyrolysis of rice husk for tertiary wastewater treatment and soil nourishment. J Clean Prod 235:1073–1079. https://doi.org/10.1016/j.jclepro.2019.07.042
Spokas KA, Cantrell KB, Novak JM, Archer DW, Ippolito JA, Collins HP, Boateng AA, Lima IM, Lamb MC, McAloon AJ, Lentz RD (2012) Biochar: a synthesis of its agronomic impact beyond carbon sequestration. J Environ Qual 41(4):973–989. https://doi.org/10.2134/jeq2011.0069
State RN, Volceanov A, Muley P, Boldor D (2019) A review of catalysts used in microwave assisted pyrolysis and gasification. Bioresour Technol 277:179–194. https://doi.org/10.1016/j.biortech.2019.01.036
Suriapparao DV, Vinu R (2015) Resource recovery from synthetic polymers via microwave pyrolysis using different susceptors. J Anal Appl Pyrolysis 113:701–712. https://doi.org/10.1016/j.jaap.2015.04.021
Tarves PC, Mullen CA, Boateng AA (2016) Effects of various reactive gas atmospheres on the properties of bio-oils produced using microwave pyrolysis. ACS Sustain Chem Eng 4(3):930–936. https://doi.org/10.1021/acssuschemeng.5b01016
Theapparat Y, Chandumpai A, Faroongsarng D (2018) Physicochemistry and utilization of wood vinegar from carbonization of tropical biomass waste. In: Tropical forests, new edition. IntechOpen, pp 163–183. http://doi.org/10.5772/intechopen.77380
Toth JD, Dou Z (2016) Use and impact of biochar and charcoal in animal production systems. In: Agricultural and environmental applications of biochar: advances and barriers, vol 63. Wiley, pp 199–224. https://doi.org/10.2136/sssaspecpub63.2014.0043.5
Undri A, Abou-Zaid M, Briens C, Berruti F, Rosi L, Bartoli M, Frediani M, Frediani P (2015) Bio-oil from pyrolysis of wood pellets using a microwave multimode oven and different microwave absorbers. Fuel 153:464–482. https://doi.org/10.1016/j.fuel.2015.02.081
Wahi R, Aziz SM, Hamdan S, Ngaini Z (2015) Biochar production from agricultural wastes via low-temperature microwave carbonization. In: 2015 IEEE international RF and microwave conference (RFM), pp 244–247. https://doi.org/10.1109/rfm.2015.7587754
Wan Y, Chen P, Zhang B, Yang C, Liu Y, Lin X, Ruan R (2009) Microwave-assisted pyrolysis of biomass: catalysts to improve product selectivity. J Anal Appl Pyrol 86(1):161–167. https://doi.org/10.1016/j.jaap.2009.05.006
Wang S, Guo X, Liang T, Zhou Y, Luo Z (2012a) Mechanism research on cellulose pyrolysis by Py-GC/MS and subsequent density functional theory studies. Bioresour Technol 104:722–728. https://doi.org/10.1016/j.biortech.2011.10.078
Wang L, Lei H, Ren S, Bu Q, Liang J, Wei Y, Liu Y, Lee GS, Chen S, Tang J, Zhang Q (2012b) Aromatics and phenols from catalytic pyrolysis of Douglas fir pellets in microwave with ZSM-5 as a catalyst. J Anal Appl Pyrol 98:194–200. https://doi.org/10.1016/j.jaap.2012.08.002
Wang L, Lei H, Lee J, Chen S, Tang J, Ahring B (2013) Aromatic hydrocarbons production from packed-bed catalysis coupled with microwave pyrolysis of Douglas fir sawdust pellets. RSC Adv 3(34):14609–14615. https://doi.org/10.1039/C3RA23104F
Wang L, Lei H, Ruan R (2015) Techno-economic analysis of microwave-assisted pyrolysis for production of biofuels. In: Production of biofuels and chemicals with microwave. Springer, Dordrecht, pp 251–263. https://doi.org/10.1007/978-94-017-9612-5_12
Wang Y, Zeng Z, Tian X, Dai L, Jiang L, Zhang S, Wu Q, Wen P, Fu G, Liu Y, Ruan R (2018) Production of bio-oil from agricultural waste by using a continuous fast microwave pyrolysis system. Bioresour Technol 269:162–168. https://doi.org/10.1016/j.biortech.2018.08.067
Wu C, Budarin VL, Gronnow MJ, De Bruyn M, Onwudili JA, Clark JH, Williams PT (2014) Conventional and microwave-assisted pyrolysis of biomass under different heating rates. J Anal Appl Pyrol 107:276–283. https://doi.org/10.1016/j.jaap.2014.03.012
Yaashikaa PR, Kumar PS, Varjani SJ, Saravanan A (2019) Advances in production and application of biochar from lignocellulosic feedstocks for remediation of environmental pollutants. Bioresour Technol 292:122030. https://doi.org/10.1016/j.biortech.2019.122030
Yang JF, Yang CH, Liang MT, Gao ZJ, Wu YW, Chuang LY (2016) Chemical composition, antioxidant, and antibacterial activity of wood vinegar from Litchi chinensis. Molecules 21:1150. https://doi.org/10.3390/molecules21091150
Yang Z, Qian K, Zhang X, Lei H, Xin C, Zhang Y, Qian M, Villota E (2018) Process design and economics for the conversion of lignocellulosic biomass into jet fuel range cycloalkanes. Energy 154:289–297. https://doi.org/10.1016/j.energy.2018.04.126
Yin C (2012) Microwave-assisted pyrolysis of biomass for liquid biofuels production. Bioresour Technol 120:273–284. https://doi.org/10.1016/j.biortech.2012.06.016
Yu F, Deng S, Chen P, Liu Y, Wan Y, Olson A, Kittelson D, Ruan R (2007) Physical and chemical properties of bio-oils from microwave pyrolysis of corn stover. In: Applied biochemistry and biotechnology. Humana Press, pp 957–970. https://doi.org/10.1007/978-1-60327-181-3_78
Yu F, Ruan R, Steele P (2009) Microwave pyrolysis of corn stover. Trans ASABE 52(5):1595–1601. https://doi.org/10.13031/2013.29110
Zhang B, Zhong Z, Chen P, Ruan R (2015) Microwave-assisted catalytic fast pyrolysis of biomass for bio-oil production using chemical vapor deposition modified HZSM-5 catalyst. Bioresour Technol 197:79–84. https://doi.org/10.1016/j.biortech.2015.08.063
Zhang B, Zhong Z, Xie Q, Liu S, Ruan R (2016) Two-step fast microwave-assisted pyrolysis of biomass for bio-oil production using microwave absorbent and HZSM-5 catalyst. J Environ Sci 45:240–247. https://doi.org/10.1016/j.jes.2015.12.019
Zhang Y, Chen P, Liu S, Peng P, Min M, Cheng Y, Anderson E, Zhou N, Fan L, Liu C, Chen G (2017a) Effects of feedstock characteristics on microwave-assisted pyrolysis–a review. Bioresour Technol 230:143–151. https://doi.org/10.1016/j.biortech.2017.01.046
Zhang S, Dong Q, Zhang L, Xiong Y (2017b) High quality syngas production from microwave pyrolysis of rice husk with char-supported metallic catalysts. Bioresour Technol 191:17–23. https://doi.org/10.1016/j.biortech.2015.04.114
Zhang Y, Chen P, Liu S, Fan L, Zhou N, Min M, Cheng Y, Peng P, Anderson E, Wang Y, Wan Y (2017c) Microwave-assisted pyrolysis of biomass for bio-oil production. In: Pyrolysis. IntechOpen, London, pp 129–166. http://doi.org/10.5772/67442
Zhang Y, Zhao W, Li B, Xie G (2018) Microwave-assisted pyrolysis of biomass for bio-oil production: a review of the operation parameters. J Energy Res Technol. doi 10(1115/1):4039604
Zhang Y, Cui Y, Liu S, Fan L, Zhou N, Peng P, Wang Y, Guo F, Min M, Cheng Y, Liu Y (2020a) Fast microwave-assisted pyrolysis of wastes for biofuels production—a review. Bioresour Technol 297:122480. https://doi.org/10.1016/j.biortech.2019.122480
Zhang Y, Wang X, Liu B, Liu Q, Zheng H, You X, Sun K, Luo X, Li F (2020b) Comparative study of individual and Co-application of biochar and wood vinegar on blueberry fruit yield and nutritional quality. Chemosphere 246:125699. https://doi.org/10.1016/j.chemosphere.2019.125699
Zhao X, Song Z, Liu H, Li Z, Li L, Ma C (2010) Microwave pyrolysis of corn stalk bale: a promising method for direct utilization of large-sized biomass and syngas production. J Anal Appl Pyrol 89(1):87–94. https://doi.org/10.1016/j.jaap.2010.06.001
Zhao X, Zhang J, Song Z, Liu H, Li L, Ma C (2011) Microwave pyrolysis of straw bale and energy balance analysis. J Anal Appl Pyrol 92(1):43–49. https://doi.org/10.1016/j.jaap.2011.04.004
Zhao X, Wang M, Liu H, Zhao C, Ma C, Song Z (2013) Effect of temperature and additives on the yields of products and microwave pyrolysis behaviors of wheat straw. J Anal Appl Pyrol 100:49–55. https://doi.org/10.1016/j.jaap.2012.11.016
Zhao X, Wang W, Liu H, Ma C, Song Z (2014) Microwave pyrolysis of wheat straw: product distribution and generation mechanism. Bioresour Technol 158:278–285. https://doi.org/10.1016/j.biortech.2014.01.094
Zhao Y, Wang Y, Duan D, Ruan R, Fan L, Zhou Y, Dai L, Lv J, Liu Y (2018) Fast microwave-assisted ex-catalytic co-pyrolysis of bamboo and polypropylene for bio-oil production. Bioresour Technol 249:69–75. https://doi.org/10.1016/j.biortech.2017.09.184
Zhou Y, Wang Y, Fan L, Dai L, Duan D, Liu Y, Ruan R, Zhao Y, Yu Z, Hu Y (2017) Fast microwave-assisted catalytic co-pyrolysis of straw stalk and soapstock for bio-oil production. J Anal Appl Pyrol 124:35–41. https://doi.org/10.1016/j.jaap.2017.02.026
Zhu L, Lei H, Wang L, Yadavalli G, Zhang X, Wei Y, Liu Y, Yan D, Chen S, Ahring B (2015) Biochar of corn stover: microwave-assisted pyrolysis condition induced changes in surface functional groups and characteristics. J Anal Appl Pyrol 115:149–156. https://doi.org/10.1016/j.jaap.2015.07.012