Microwave assisted in situ decoration of a g-C3N4 surface with CdCO3 nanoparticles for visible light driven photocatalysis

New Journal of Chemistry - Tập 42 Số 8 - Trang 6322-6331
Devthade Vidyasagar1,2,3,4,5, Sachin G. Ghugal6,7,2,8,9, Anagha Kulkarni10,2,4, Ashok G. Shende1,2,3,4,5, Suresh S. Umare1,2,3,4,5, R. Sasikala11,12,2,13
1Department of Chemistry
2India
3Materials and Catalysis Laboratory, Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur, India
4Nagpur
5Visvesvaraya National Institute of Technology (VNIT)
6Gachibowli
7Hyderabad
8School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad, India
9UNIVERSITY OF HYDERABAD
10CSIR-National Environmental Engineering Research Institute, Nagpur, India
11Bhabha Atomic Research Centre, Trombay
12Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
13Mumbai

Tóm tắt

Graphitic carbon nitride (g-C3N4) supported cadmium carbonate (CdCO3) as an organic–inorganic hybrid nanophotocatalyst was realised by an in situ microwave heating method.

Từ khóa


Tài liệu tham khảo

Chen, 2010, Chem. Soc. Rev., 39, 4206, 10.1039/b921692h

Chan, 2011, J. Chem. Technol. Biotechnol., 86, 1130, 10.1002/jctb.2636

Wang, 2012, Angew. Chem., Int. Ed., 51, 68, 10.1002/anie.201101182

Lotsch, 2006, Abstr. Pap. Am. Chem. Soc., 231

Goettmann, 2007, New J. Chem., 31, 1455, 10.1039/b618555j

Cui, 2012, Phys. Chem. Chem. Phys., 14, 1455, 10.1039/C1CP22820J

Wang, 2012, Angew. Chem., Int. Ed., 51, 68, 10.1002/anie.201101182

Wang, 2009, J. Am. Chem. Soc., 131, 1680, 10.1021/ja809307s

Das, 2016, ACS Appl. Mater. Interfaces, 8, 2181, 10.1021/acsami.5b10770

Vidyasagar, 2018, Appl. Catal., B, 221, 339, 10.1016/j.apcatb.2017.09.030

Jiang, 2017, Appl. Catal., B, 205, 532, 10.1016/j.apcatb.2017.01.009

Ye, 2015, ACS Catalysis, 5, 6973, 10.1021/acscatal.5b02185

Zhong, 2014, Appl. Surf. Sci., 295, 253, 10.1016/j.apsusc.2014.01.008

Niu, 2014, Chem. Commun., 50, 10837, 10.1039/C4CC03060E

Lin, 2014, ACS Sustainable Chem. Eng., 2, 353, 10.1021/sc4004295

Kuriki, 2015, Angew. Chem., Int. Ed., 54, 2406, 10.1002/anie.201411170

Zhang, 2015, ChemCatChem, 7, 1422, 10.1002/cctc.201500133

Cui, 2017, Environ. Sci. Technol., 51, 10682, 10.1021/acs.est.7b00974

Dong, 2014, J. Photochem. Photobiol., C, 20, 33, 10.1016/j.jphotochemrev.2014.04.002

Cao, 2015, Adv. Mater., 27, 2150, 10.1002/adma.201500033

Kessler, 2017, Nat. Rev. Mater., 2, 17030, 10.1038/natrevmats.2017.30

Wang, 2009, Nat. Mater., 8, 76, 10.1038/nmat2317

Cui, 2017, J. Catal., 352, 351, 10.1016/j.jcat.2017.05.017

Algara-Siller, 2014, Angew. Chem., Int. Ed., 53, 7450, 10.1002/anie.201402191

Li, 2017, J. Mater. Chem. A, 5, 9358, 10.1039/C7TA02183F

Huang, 2014, Mater. Chem. Phys., 147, 996, 10.1016/j.matchemphys.2014.06.050

Zhu, 2014, ACS Appl. Mater. Interfaces, 6, 16449, 10.1021/am502925j

Dong, 2015, Environ. Sci. Technol., 49, 12432, 10.1021/acs.est.5b03758

Yan, 2009, Langmuir: the ACS journal of surfaces and colloids, 25, 10397, 10.1021/la900923z

Gillan, 2000, Chem. Mater., 12, 3906, 10.1021/cm000570y

Zhang, 2015, J. Mater. Chem. A, 3, 3281, 10.1039/C5TA00202H

Cao, 2003, Diamond Relat. Mater., 12, 1070, 10.1016/S0925-9635(02)00309-6

Lv, 2003, J. Mater. Chem., 13, 1241, 10.1039/b303210h

Song, 2012, Chem. Eng. J., 195–196, 15, 10.1016/j.cej.2012.04.069

Barboza, 2009, Chem. Phys. Lett., 480, 273, 10.1016/j.cplett.2009.09.035

Gao, 2014, Dalton Trans., 43, 8178, 10.1039/C3DT53224K

Xu, 2016, RSC Adv., 6, 55382, 10.1039/C6RA10509B

Papenguth, 1989, Am. Mineral., 74, 1152

Beshah, 1990, J. Solid State Chem., 84, 71, 10.1016/0022-4596(90)90185-Z

Yang, 2015, ACS Appl. Mater. Interfaces, 7, 15285, 10.1021/acsami.5b02649

Xu, 2014, Nanoscale, 6, 1406, 10.1039/C3NR04759H

Zelisko, 2014, Nat. Commun., 5, 4284, 10.1038/ncomms5284

Datta, 2011, Chem. – Eur. J., 17, 3390, 10.1002/chem.201002419

Pantelides, 1978, Rev. Mod. Phys., 50, 797, 10.1103/RevModPhys.50.797

Moreno, 2011, J. Mater. Sci. Eng. A, 1, 991

Zhang, 2015, Energy Environ. Sci., 8, 3092, 10.1039/C5EE01895A

Subramanian, 2004, J. Am. Chem. Soc., 126, 4943, 10.1021/ja0315199

Xu, 2013, Appl. Catal., B, 129, 182, 10.1016/j.apcatb.2012.08.015

Lopez-Ramon, 1999, Carbon, 37, 1215, 10.1016/S0008-6223(98)00317-0

Sawyer, 1981, Acc. Chem. Res., 14, 393, 10.1021/ar00072a005

Kudo, 2009, Chem. Soc. Rev., 38, 253, 10.1039/B800489G

Vinu, 2012, J. Indian Inst. Sci., 90, 189

Dalmázio, 2007, J. Mass Spectrom., 42, 1273, 10.1002/jms.1159

Chacon-Patino, 2013, Green Chem., 15, 2920, 10.1039/c3gc40911b

Xu, 2016, Chem. – Eur. J., 22, 3947, 10.1002/chem.201505173

Song, 2009, J. Am. Chem. Soc., 131, 4230, 10.1021/ja810130h

Saito, 1992, J. Photochem. Photobiol., B, 14, 369, 10.1016/1011-1344(92)85115-B

Huang, 2000, J. Photochem. Photobiol., A, 130, 163, 10.1016/S1010-6030(99)00205-1

Cheng, 2007, Chem. Rev., 107, 748, 10.1021/cr040077w