Microwave and ultrasonic processing: Now a realistic option for industry

Chemical Engineering and Processing: Process Intensification - Tập 49 Số 9 - Trang 885-900 - 2010
Cristina Leonelli1, Timothy J. Mason2
1M.A.G. – Microwave Application Group Dipartimento di Ingegneria dei Materiali e dell’Ambiente, Università di Modena e Reggio Emilia, Via Vignolese 905, 41125 Modena, Italy
2Sonochemistry Centre, Faculty of Health and Life Sciences, Coventry University, CV1 5FB, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Loupy, 2004

Kappe, 2008, Soc. Chem. Rev., 37, 1127, 10.1039/b803001b

Van Gerven, 2009, Structure, energy, synergy, times-the fundamentals of process intensification, Ind. Eng. Chem. Res., 48, 2465, 10.1021/ie801501y

Metaxas, 1996

Von Hippel, 1954

Frölich, 1958

Raju, 2003

Ulaby, 2001

Pozar, 1998

Metaxas, 1993

Veronesi, 2001, Microwave industrial applications in the ceramic field, Int. Ceram. J., 57–62

citare noi.

Vallee, 2006, Microwaves and sorption on oxides: a surface temperature investigation, J. Phys. Chem. B, 110, 15459, 10.1021/jp061679h

Veronesi, 2003, Microwave assisted sintering of SLS green metal parts

Leonelli, 2007, Main development directions in the application of microwave irradiation to the synthesis of nanopowders, Chem. Today, 25, 34

Agostino, 2004, Preparation of germanium monosulfide particles by microwave assisted sublimation, Mater. Res. Innov., 8, 44, 10.1080/14328917.2004.11784825

Rizzuti, 2008, Crystallization of aragonite particles from solution under microwave irradiation, Powder Technol., 186, 255, 10.1016/j.powtec.2007.12.012

Jhung, 2004, Effects of reaction conditions in microwave synthesis of nanocrystalline barium titanate, Mater. Lett., 58, 3161, 10.1016/j.matlet.2004.06.006

Niepce, 2002, The magnetic properties of magnetic nanoparticles produced by microwave flash synthesis of ferrous alcoholic solutions, IEEE Trans. Magn., 38, 2622, 10.1109/TMAG.2002.801963

http://www.milestonesci.com/ultraclave.php (last access 24 April 2010).

http://www.fzk.de/fzk/idcplg?IdcService=FZK&node=2231&lang=en (last access 24 April 2010).

Hajek, 2002, Microwave photochemistry

Žabová, 2009, Microwave photocatalysis III. Transition metal ion-doped TiO2 thin films on mercury electrodeless discharge lamps: preparation, characterization and their effect on the photocatalytic degradation of mono-chloroacetic acid and Rhodamine B, J. Chem. Technol. Biotechnol., 84, 1624, 10.1002/jctb.2220

Veronesi, 2008, Enhanced reactive NiAl coatings by microwave-assisted SHS, COMPEL, 27, 491, 10.1108/03321640810847779

Veronesi, 2007, The design and optimization of a new microwave plasma source by numerical simulation, Plasma Dev. Operat., 15, 13, 10.1080/10519990601063634

P. Veronesi, C. Leonelli, M. Garuti, Plasma generator with a slot antenna, European Patent Application EP1,739,717.

Leonelli, 2007, Numerical simulation of an industrial microwave assisted filter dryer: criticality assessment and optimization, J. Microw. Power Electromagn. Energy, 41, 5

Wood, 1927, The physical and biological effects of high frequency sound waves of great intensity, Philos. Mag., 4, 417, 10.1080/14786440908564348

Wood, 1927, The chemical effects of high frequency sound waves I. A preliminary survey, J. Am. Chem. Soc., 49, 3086, 10.1021/ja01411a015

Richards, 1929, The chemical effects of high frequency sound waves II. A study of emulsifying action, J. Am. Chem. Soc., 51, 1724, 10.1021/ja01381a013

Mark, 1945, Some applications of ultrasonics in high-polymer research, J. Acoust. Soc. Am., 16, 183, 10.1121/1.1916279

Weissler, 1948, Ultrasonics in chemistry, J. Chem. Educ., 25, 28, 10.1021/ed025p28

Lorimer, 1987, Sonochemistry part 1—the physical aspects, Chem. Soc. Rev., 16, 239, 10.1039/CS9871600239

Lindley, 1987, Sonochemistry part 2—synthetic applications, Chem. Soc. Rev., 16, 275, 10.1039/CS9871600275

Ashokkumar, 2007, Sonochemistry

Mason, 2003

Mason, 2002

Mason, 2003, Sonochemistry and sonoprocessing: the link, the trends and (probably) the future, Ultrason. Sonochem., 10, 175, 10.1016/S1350-4177(03)00086-5

Mason, 2002, Sonochemistry, 372

Mason, 1990, Sonoelectrochemistry, Ultrasonics, 28, 333, 10.1016/0041-624X(90)90041-L

Compton, 1997, Sonoelectrochemical processes: a review, Electroanalysis, 9, 509, 10.1002/elan.1140090702

Mason, 2001, Ultrasound in environmental protection, vol. 6

Joyce, 2008, Sonication used as a biocide a review: ultrasound a greener alternative to chemical biocides, Chem. Today, 26, 12

Povey, 1998

Mason, 2005, Applications of Ultrasound, 323

Gedanken, 2004, Using sonochemistry for the fabrication of nanomaterials, Ultrason. Sonochem., 11, 47, 10.1016/j.ultsonch.2004.01.037

Cobley, 2007, Alternative surface modification processes in metal finishing and electronic manufacturing industries, Trans. IMF, 85, 293, 10.1179/174591907X246528

Cobley, 2008, Sonochemical surface modification. A route to lean, green and clean manufacturing, J. Appl. Sur. Fin., 3, 190

Yu, 2004, A review of research into the uses of low level ultrasound in cancer therapy, Ultrason. Sonochem., 11, 95, 10.1016/S1350-4177(03)00157-3

ter Haar, 2008, The resurgence of therapeutic ultrasound—a 21st century phenomenon, Ultrasonics, 48, 233, 10.1016/j.ultras.2008.07.007

Weissler, 1962, Variations of cavitation intensity in an ultrasonic generator, J. Acous. Soc. Am., 34, 130, 10.1121/1.1909000

Gondrexon, 1998, Experimental study of the hydrodynamic behaviour of a high frequency ultrasonic reactor, Ultrason. Sonochem., 5, 1, 10.1016/S1350-4177(97)00043-6

Gogate, 2002, Mapping of sonochemical reactors: review, analysis, and experimental verification, AIChE J., 48, 1542, 10.1002/aic.690480717

Pugin, 1987, Qualitative characterization of ultrasound reactors for heterogeneous sonochemistry, Ultrasonics, 25, 49, 10.1016/0041-624X(87)90012-6

Mason, 1992, Quantifying sonochemistry: casting some light on a black art, Ultrasonics, 30, 40, 10.1016/0041-624X(92)90030-P

Kimura, 1996, Standardization of ultrasonic power for sonochemical reaction, Ultrason. Sonochem., 3, S157, 10.1016/S1350-4177(96)00021-1

Renaudin, 1994, Method for determining the chemically active zones in a high-frequency ultrasonic reactor, Ultrason. Sonochem., 1, S81, 10.1016/1350-4177(94)90002-7

Mettin, 2005, Bubble structures in acoustic cavitation, 1

Brown, 1965

Neppiras, 1972, Macrosonics in industry. 1. Introduction, Ultrasonics, 10, 9, 10.1016/0041-624X(72)90207-7

Destaillats, 2001, Scale-up of sonochemical reactors for water treatment, Ind. Eng. Chem. Res., 40, 3855, 10.1021/ie010110u

Gogate, 2003, Large-scale sonochemical reactors for process intensification: design and experimental validation, J. Chem. Technol. Biotechnol., 78, 685, 10.1002/jctb.697

Sutkar, 2009, Design aspects of sonochemical reactors: techniques for understanding cavitational activity distribution and effect of operating parameters, Chem. Eng. J., 155, 26, 10.1016/j.cej.2009.07.021

Vinatoru, 2001, An overview of the ultrasonically assisted extraction of bioactive principles from herbs, Ultrason. Sonochem., 8, 303, 10.1016/S1350-4177(01)00071-2

Hua, 2001, Ultrasonic irradiation of carbofuran: decomposition kinetics and reactor characterization, Water Res., 35, 1445, 10.1016/S0043-1354(00)00398-5

Rooksby, 2008

Nickel, 2007, Ultrasonic disintegration of biosolids for improved biodegradation, Ultrason. Sonochem., 14, 450, 10.1016/j.ultsonch.2006.10.012

Ilic, 2009, The influence of silver content on antimicrobial activity and color of cotton fabrics functionalized with Ag nanoparticles, Carbohydr. Polym., 78, 564, 10.1016/j.carbpol.2009.05.015

Abramov, 2009, Pilot scale sonochemical coating of nanoparticles onto textiles to produce biocidal fabrics, Surf. Coat. Technol., 204, 718, 10.1016/j.surfcoat.2009.09.030

Ruecroft, 2005, Sonocrystallization: the use of ultrasound for improved industrial crystallization, Org. Proc. Res. Dev., 9, 923, 10.1021/op050109x

Ruecroft, 2009, Making superior particles for drug delivery using power ultrasound, Eur. Ind. Pharm., 16, 16

G. Ruecroft, et al., Process for improving crystallinity, WO 2010/007447 (2010).

M. Arnoldo Barrientos, et al., Electroacoustic method and device for stimulation of mass transfer processes for enhanced well recovery, US Patent 7,059,403 (2006).

Mullakaev, 2009, An ultrasonic technology for productivity restoration in low-flow boreholes, Chem. Petrol. Eng., 45, 203, 10.1007/s10556-009-9171-6

Nii, 2006, A novel method to separate organic compounds through ultrasonic atomization, Chem. Eng. Res. Des., 84, 412, 10.1205/cherd05016

Nii, 2005, Application of ultrasonic atomization to production of a high-quality japanese sake and ethanol-enrichment from its aqueous solution, Mater. Integr., 18, 12

Deshayes, 1999, Microwave activation in phase transfer catalysis, Tetrahedron, 55, 10851, 10.1016/S0040-4020(99)00601-8

Chemat, 1996, An original microwave-ultrasound combined reactor suitable for organic synthesis: application to pyrolysis and esterification, J. Microw. Power Electromagn. Energy, 31, 19, 10.1080/08327823.1996.11688288

Maeda, 1995, Chemical effects under simultaneous irradiation by microwaves and ultrasound, New J. Chem., 19, 1023

Cravotto, 2006, Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications, Chem. Soc. Rev., 35, 180, 10.1039/B503848K

Chemat, 2004, Ultrasound assisted microwave digestion, Ultrason. Sonochem., 11, 5, 10.1016/S1350-4177(03)00128-7

Cravotto, 2007, The combined use of microwaves and ultrasound: improved tools in process chemistry and organic synthesis, Chem.—A Eur. J., 13, 1902, 10.1002/chem.200601845

Domini, 2009, A simultaneous, direct microwave/ultrasound-assisted digestion procedure for the determination of total Kjeldahl nitrogen, Ultrason. Sonochem., 16, 564, 10.1016/j.ultsonch.2008.12.006

A. Canals, et al., Aparato y metodo que permite irradiar directamente bien de forma simultanea, consecutiva o alternativamente una muestra con radiacion de microondas y/o ultrasonidos, Patent Spain, ES2,304,839 (2009).

I. Longo, V. Ragaini, Method for activation of chemical or chemical–physical processes by a simultaneous use of microwaves and ultrasonic pulses and chemical reactor that carries out this method, World Patent WO/2007/093883 (2007).