Microwave and ultrasonic processing: Now a realistic option for industry
Tóm tắt
Từ khóa
Tài liệu tham khảo
Loupy, 2004
Van Gerven, 2009, Structure, energy, synergy, times-the fundamentals of process intensification, Ind. Eng. Chem. Res., 48, 2465, 10.1021/ie801501y
Metaxas, 1996
Von Hippel, 1954
Frölich, 1958
Raju, 2003
Ulaby, 2001
Pozar, 1998
Metaxas, 1993
Veronesi, 2001, Microwave industrial applications in the ceramic field, Int. Ceram. J., 57–62
citare noi.
Vallee, 2006, Microwaves and sorption on oxides: a surface temperature investigation, J. Phys. Chem. B, 110, 15459, 10.1021/jp061679h
Veronesi, 2003, Microwave assisted sintering of SLS green metal parts
Leonelli, 2007, Main development directions in the application of microwave irradiation to the synthesis of nanopowders, Chem. Today, 25, 34
Agostino, 2004, Preparation of germanium monosulfide particles by microwave assisted sublimation, Mater. Res. Innov., 8, 44, 10.1080/14328917.2004.11784825
Rizzuti, 2008, Crystallization of aragonite particles from solution under microwave irradiation, Powder Technol., 186, 255, 10.1016/j.powtec.2007.12.012
Jhung, 2004, Effects of reaction conditions in microwave synthesis of nanocrystalline barium titanate, Mater. Lett., 58, 3161, 10.1016/j.matlet.2004.06.006
Niepce, 2002, The magnetic properties of magnetic nanoparticles produced by microwave flash synthesis of ferrous alcoholic solutions, IEEE Trans. Magn., 38, 2622, 10.1109/TMAG.2002.801963
http://www.milestonesci.com/ultraclave.php (last access 24 April 2010).
http://www.fzk.de/fzk/idcplg?IdcService=FZK&node=2231&lang=en (last access 24 April 2010).
Hajek, 2002, Microwave photochemistry
Žabová, 2009, Microwave photocatalysis III. Transition metal ion-doped TiO2 thin films on mercury electrodeless discharge lamps: preparation, characterization and their effect on the photocatalytic degradation of mono-chloroacetic acid and Rhodamine B, J. Chem. Technol. Biotechnol., 84, 1624, 10.1002/jctb.2220
Veronesi, 2008, Enhanced reactive NiAl coatings by microwave-assisted SHS, COMPEL, 27, 491, 10.1108/03321640810847779
Veronesi, 2007, The design and optimization of a new microwave plasma source by numerical simulation, Plasma Dev. Operat., 15, 13, 10.1080/10519990601063634
P. Veronesi, C. Leonelli, M. Garuti, Plasma generator with a slot antenna, European Patent Application EP1,739,717.
Leonelli, 2007, Numerical simulation of an industrial microwave assisted filter dryer: criticality assessment and optimization, J. Microw. Power Electromagn. Energy, 41, 5
Wood, 1927, The physical and biological effects of high frequency sound waves of great intensity, Philos. Mag., 4, 417, 10.1080/14786440908564348
Wood, 1927, The chemical effects of high frequency sound waves I. A preliminary survey, J. Am. Chem. Soc., 49, 3086, 10.1021/ja01411a015
Richards, 1929, The chemical effects of high frequency sound waves II. A study of emulsifying action, J. Am. Chem. Soc., 51, 1724, 10.1021/ja01381a013
Mark, 1945, Some applications of ultrasonics in high-polymer research, J. Acoust. Soc. Am., 16, 183, 10.1121/1.1916279
Lorimer, 1987, Sonochemistry part 1—the physical aspects, Chem. Soc. Rev., 16, 239, 10.1039/CS9871600239
Lindley, 1987, Sonochemistry part 2—synthetic applications, Chem. Soc. Rev., 16, 275, 10.1039/CS9871600275
Ashokkumar, 2007, Sonochemistry
Mason, 2003
Mason, 2002
Mason, 2003, Sonochemistry and sonoprocessing: the link, the trends and (probably) the future, Ultrason. Sonochem., 10, 175, 10.1016/S1350-4177(03)00086-5
Mason, 2002, Sonochemistry, 372
Compton, 1997, Sonoelectrochemical processes: a review, Electroanalysis, 9, 509, 10.1002/elan.1140090702
Mason, 2001, Ultrasound in environmental protection, vol. 6
Joyce, 2008, Sonication used as a biocide a review: ultrasound a greener alternative to chemical biocides, Chem. Today, 26, 12
Povey, 1998
Mason, 2005, Applications of Ultrasound, 323
Gedanken, 2004, Using sonochemistry for the fabrication of nanomaterials, Ultrason. Sonochem., 11, 47, 10.1016/j.ultsonch.2004.01.037
Cobley, 2007, Alternative surface modification processes in metal finishing and electronic manufacturing industries, Trans. IMF, 85, 293, 10.1179/174591907X246528
Cobley, 2008, Sonochemical surface modification. A route to lean, green and clean manufacturing, J. Appl. Sur. Fin., 3, 190
Yu, 2004, A review of research into the uses of low level ultrasound in cancer therapy, Ultrason. Sonochem., 11, 95, 10.1016/S1350-4177(03)00157-3
ter Haar, 2008, The resurgence of therapeutic ultrasound—a 21st century phenomenon, Ultrasonics, 48, 233, 10.1016/j.ultras.2008.07.007
Weissler, 1962, Variations of cavitation intensity in an ultrasonic generator, J. Acous. Soc. Am., 34, 130, 10.1121/1.1909000
Gondrexon, 1998, Experimental study of the hydrodynamic behaviour of a high frequency ultrasonic reactor, Ultrason. Sonochem., 5, 1, 10.1016/S1350-4177(97)00043-6
Gogate, 2002, Mapping of sonochemical reactors: review, analysis, and experimental verification, AIChE J., 48, 1542, 10.1002/aic.690480717
Pugin, 1987, Qualitative characterization of ultrasound reactors for heterogeneous sonochemistry, Ultrasonics, 25, 49, 10.1016/0041-624X(87)90012-6
Mason, 1992, Quantifying sonochemistry: casting some light on a black art, Ultrasonics, 30, 40, 10.1016/0041-624X(92)90030-P
Kimura, 1996, Standardization of ultrasonic power for sonochemical reaction, Ultrason. Sonochem., 3, S157, 10.1016/S1350-4177(96)00021-1
Renaudin, 1994, Method for determining the chemically active zones in a high-frequency ultrasonic reactor, Ultrason. Sonochem., 1, S81, 10.1016/1350-4177(94)90002-7
Mettin, 2005, Bubble structures in acoustic cavitation, 1
Brown, 1965
Neppiras, 1972, Macrosonics in industry. 1. Introduction, Ultrasonics, 10, 9, 10.1016/0041-624X(72)90207-7
Destaillats, 2001, Scale-up of sonochemical reactors for water treatment, Ind. Eng. Chem. Res., 40, 3855, 10.1021/ie010110u
Gogate, 2003, Large-scale sonochemical reactors for process intensification: design and experimental validation, J. Chem. Technol. Biotechnol., 78, 685, 10.1002/jctb.697
Sutkar, 2009, Design aspects of sonochemical reactors: techniques for understanding cavitational activity distribution and effect of operating parameters, Chem. Eng. J., 155, 26, 10.1016/j.cej.2009.07.021
Vinatoru, 2001, An overview of the ultrasonically assisted extraction of bioactive principles from herbs, Ultrason. Sonochem., 8, 303, 10.1016/S1350-4177(01)00071-2
Hua, 2001, Ultrasonic irradiation of carbofuran: decomposition kinetics and reactor characterization, Water Res., 35, 1445, 10.1016/S0043-1354(00)00398-5
Rooksby, 2008
Nickel, 2007, Ultrasonic disintegration of biosolids for improved biodegradation, Ultrason. Sonochem., 14, 450, 10.1016/j.ultsonch.2006.10.012
Ilic, 2009, The influence of silver content on antimicrobial activity and color of cotton fabrics functionalized with Ag nanoparticles, Carbohydr. Polym., 78, 564, 10.1016/j.carbpol.2009.05.015
Abramov, 2009, Pilot scale sonochemical coating of nanoparticles onto textiles to produce biocidal fabrics, Surf. Coat. Technol., 204, 718, 10.1016/j.surfcoat.2009.09.030
Ruecroft, 2005, Sonocrystallization: the use of ultrasound for improved industrial crystallization, Org. Proc. Res. Dev., 9, 923, 10.1021/op050109x
Ruecroft, 2009, Making superior particles for drug delivery using power ultrasound, Eur. Ind. Pharm., 16, 16
G. Ruecroft, et al., Process for improving crystallinity, WO 2010/007447 (2010).
M. Arnoldo Barrientos, et al., Electroacoustic method and device for stimulation of mass transfer processes for enhanced well recovery, US Patent 7,059,403 (2006).
Mullakaev, 2009, An ultrasonic technology for productivity restoration in low-flow boreholes, Chem. Petrol. Eng., 45, 203, 10.1007/s10556-009-9171-6
Nii, 2006, A novel method to separate organic compounds through ultrasonic atomization, Chem. Eng. Res. Des., 84, 412, 10.1205/cherd05016
Nii, 2005, Application of ultrasonic atomization to production of a high-quality japanese sake and ethanol-enrichment from its aqueous solution, Mater. Integr., 18, 12
Deshayes, 1999, Microwave activation in phase transfer catalysis, Tetrahedron, 55, 10851, 10.1016/S0040-4020(99)00601-8
Chemat, 1996, An original microwave-ultrasound combined reactor suitable for organic synthesis: application to pyrolysis and esterification, J. Microw. Power Electromagn. Energy, 31, 19, 10.1080/08327823.1996.11688288
Maeda, 1995, Chemical effects under simultaneous irradiation by microwaves and ultrasound, New J. Chem., 19, 1023
Cravotto, 2006, Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications, Chem. Soc. Rev., 35, 180, 10.1039/B503848K
Chemat, 2004, Ultrasound assisted microwave digestion, Ultrason. Sonochem., 11, 5, 10.1016/S1350-4177(03)00128-7
Cravotto, 2007, The combined use of microwaves and ultrasound: improved tools in process chemistry and organic synthesis, Chem.—A Eur. J., 13, 1902, 10.1002/chem.200601845
Domini, 2009, A simultaneous, direct microwave/ultrasound-assisted digestion procedure for the determination of total Kjeldahl nitrogen, Ultrason. Sonochem., 16, 564, 10.1016/j.ultsonch.2008.12.006
A. Canals, et al., Aparato y metodo que permite irradiar directamente bien de forma simultanea, consecutiva o alternativamente una muestra con radiacion de microondas y/o ultrasonidos, Patent Spain, ES2,304,839 (2009).
I. Longo, V. Ragaini, Method for activation of chemical or chemical–physical processes by a simultaneous use of microwaves and ultrasonic pulses and chemical reactor that carries out this method, World Patent WO/2007/093883 (2007).