Microwave and spark plasma sintering of carbon nanotube and graphene reinforced aluminum matrix composite
Tóm tắt
Từ khóa
Tài liệu tham khảo
Shirvanimoghaddam, 2017, Carbon fiber reinforced metal matrix composites: fabrication processes and properties, Compos. A Appl. Sci. Manuf., 92, 10.1016/j.compositesa.2016.10.032
Ghasali, 2017, Evaluation of microstructure and mechanical properties of Al-TaC composites prepared by spark plasma sintering process, J. Alloys Compd., 705, 283, 10.1016/j.jallcom.2017.02.144
Torralba, 2003, P/M aluminum matrix composites: an overview, J. Mater. Process. Technol., 133, 203, 10.1016/S0924-0136(02)00234-0
Ghasali, 2015, WC-Co particles reinforced aluminum matrix by conventional and microwave sintering, Mater. Res., 18, 1197, 10.1590/1516-1439.027115
Das, 2014, Fabrication and heat treatment of ceramic-reinforced aluminium matrix composites-a review, Int. J. Mech. Mater. Eng., 9, 6, 10.1186/s40712-014-0006-7
Majidian, 2016, Effect of heating method on microstructure and mechanical properties of zircon reinforced aluminum composites, Mater. Res., 19, 1443, 10.1590/1980-5373-mr-2016-0390
Chawla, 1998, Effect of SiC volume fraction and particle size on the fatigue resistance of a 2080 Al/SiCp composite, Metall. Mater. Trans. A, 29, 2843, 10.1007/s11661-998-0325-5
Ghasali, 2016, Low temperature sintering of aluminum-zircon metal matrix composite prepared by spark plasma sintering, Mater. Res., 19, 1189, 10.1590/1980-5373-MR-2016-0395
Bakshi, 2010, Carbon nanotube reinforced metal matrix composites – a review, Int. Mater. Rev., 55, 41, 10.1179/095066009X12572530170543
Saheb, 2012, Spark plasma sintering of metals and metal matrix nanocomposites: a review, J. Nanomater., 2012, 18, 10.1155/2012/983470
Ghasali, 2016, Microwave sintering of aluminum-ZrB2 composite: focusing on microstructure and mechanical properties, Mater. Res., 19, 765, 10.1590/1980-5373-MR-2015-0799
Bodunrin, 2015, Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics, J. Mater. Res. Technol., 4, 434, 10.1016/j.jmrt.2015.05.003
Singla, 2015, CNT reinforced aluminium matrix composite – a review, Mater. Today Proc., 2, 2886, 10.1016/j.matpr.2015.07.248
Liao, 2011, A simple approach to prepare Al/CNT composite: Spread–Dispersion (SD) method, Mater. Lett., 65, 2742, 10.1016/j.matlet.2011.05.067
Abolhasani, 2017, PVDF/graphene composite nanofibers with enhanced piezoelectric performance for development of robust nanogenerators, Compos. Sci. Technol., 138, 49, 10.1016/j.compscitech.2016.11.017
Shirvanimoghaddam, 2017, Cheetah skin structure: a new approach for carbon-nano-patterning of carbon nanotubes, Compos. A Appl. Sci. Manuf., 95, 304, 10.1016/j.compositesa.2017.01.023
Tjong, 2013, Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets, Mater. Sci. Eng. R Rep., 74, 281, 10.1016/j.mser.2013.08.001
Yue, 2013, Interface reaction of CNTs/Al composites fabricated by high energy ball milling, Adv. Mater. Res. Trans. Tech. Publ., 90
Morsi, 2010, Characterization and spark plasma sintering of mechanically milled aluminum-carbon nanotube (CNT) composite powders, J. Compos. Mater., 44, 1991, 10.1177/0021998310361990
Pérez-Bustamante, 2010, Microstructural characterization of Al-MWCNT composites produced by mechanical milling and hot extrusion, J. Alloys Compd., 495, 399, 10.1016/j.jallcom.2009.10.099
Yan, 2016, A quantitative method to characterize the Al 4C 3-formed interfacial reaction: the case study of MWCNT/Al composites, Mater. Charact., 112, 213, 10.1016/j.matchar.2015.12.031
Desai, 2005, Mechanics of the interface for carbon nanotube–polymer composites, Thin-Walled Struct., 43, 1787, 10.1016/j.tws.2005.07.003
Miracle, 2001
Alfonso, 2015, FEA evaluation of the Al4C3 formation effect on the Young's modulus of carbon nanotube reinforced aluminum matrix composites, Compos. Struct., 127, 420, 10.1016/j.compstruct.2015.03.032
Wang, 2015, Synergy effect of reinforcement particle, fiber and matrix on wear resistance of hybrid metal matrix composite fabricated by low pressure infiltration process, Mater. Des., 66, 498, 10.1016/j.matdes.2014.06.025
Ghasali, 2017, Production of Al-SiC-TiC hybrid composites using pure and 1056 aluminum powders prepared through microwave and conventional heating methods, J. Alloys Compd., 690, 512, 10.1016/j.jallcom.2016.08.145
Kim, 2014, Hot extrusion of A356 aluminum metal matrix composite with carbon nanotube/Al2O3 hybrid reinforcement, Metall. Mater. Trans. A, 45, 2636, 10.1007/s11661-014-2185-5
Bakshi, 2010, Carbon nanotube reinforced metal matrix composites – a review, Int. Mater. Rev., 55, 41, 10.1179/095066009X12572530170543
Kumar, 2014, Graphene reinforced metal matrix composite (GRMMC): a review, Proc. Eng., 97, 1033, 10.1016/j.proeng.2014.12.381
Li, 2015, Synergistic strengthening effect of graphene-carbon nanotube hybrid structure in aluminum matrix composites, Carbon N. Y., 95, 419, 10.1016/j.carbon.2015.08.014
Ghasali, 2017, Fabrication of magnesium-boron carbide metal matrix composite by powder metallurgy route: comparison between microwave and spark plasma sintering, J. Alloys Compd., 697, 200, 10.1016/j.jallcom.2016.12.146
Ghasali, 2016, Vanadium carbide reinforced aluminum matrix composite prepared by conventional, microwave and spark plasma sintering, J. Alloys Compd., 688, 527, 10.1016/j.jallcom.2016.07.063
Munir, 2006, The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method, J. Mater. Sci., 41, 763, 10.1007/s10853-006-6555-2
Kim, 2013, Fabrication of A356 aluminum alloy matrix composite with CNTs/Al2O3 hybrid reinforcements, Mater. Sci. Eng. A, 573, 92, 10.1016/j.msea.2013.02.041
Fatemi, 2016, Recent developments concerning the dispersion of carbon nanotubes in surfactant/polymer systems by MD simulation, J. Nanostruct. Chem., 6, 29, 10.1007/s40097-015-0175-9
Shin, 2013, Strengthening behavior of chopped multi-walled carbon nanotube reinforced aluminum matrix composites, Mater. Charact., 83, 170, 10.1016/j.matchar.2013.05.018
Kwon, 2009, Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites, Carbon N.Y., 47, 570, 10.1016/j.carbon.2008.10.041
Bakshi, 2009, Interface in carbon nanotube reinforced aluminum silicon composites: thermodynamic analysis and experimental verification, J. Alloys Compd., 481, 207, 10.1016/j.jallcom.2009.03.055
Ghasali, 2017, Preparation of silicon carbide/carbon fiber composites through high-temperature spark plasma sintering, J. Asian Ceram. Soc., 5, 10.1016/j.jascer.2017.10.004
Al-Aqeeli, 2013, Processing of CNTs reinforced Al-based nanocomposites using different consolidation techniques, J. Nanomater., 2013, 125, 10.1155/2013/370785
Esawi, 2010, Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites, Compos. Sci. Technol., 70, 2237, 10.1016/j.compscitech.2010.05.004
Pang, 2009, Effect of adding carbon nanotubes on stress of Fe3Al intermetallics, Trans. Nonferrous Met. Soc. China, 19, 1201, 10.1016/S1003-6326(08)60429-X
Le, 2013, Structure and strength of aluminum with sub-micrometer/micrometer grain size prepared by spark plasma sintering, Mater. Des., 49, 360, 10.1016/j.matdes.2013.01.018
Ci, 2006, Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum, Acta Mater., 54, 5367, 10.1016/j.actamat.2006.06.031
Tham, 2001, Effect of limited matrix–reinforcement interfacial reaction on enhancing the mechanical properties of aluminium–silicon carbide composites, Acta Mater., 49, 3243, 10.1016/S1359-6454(01)00221-X
Bisht, 2017, Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering, Mater. Sci. Eng. A, 695, 20, 10.1016/j.msea.2017.04.009
Oghbaei, 2010, Microwave versus conventional sintering: a review of fundamentals, advantages and applications, J. Alloys Compd., 494, 175, 10.1016/j.jallcom.2010.01.068
Ghasali, 2018, Mechanical and microstructural properties of WC-based cermets: a comparative study on the effect of Ni and Mo binder phases, Ceram. Int., 44, 2283, 10.1016/j.ceramint.2017.10.189
Ghasali, 2017, Evaluation of microstructure and mechanical properties of Al-TiC metal matrix composite prepared by conventional, microwave and spark plasma sintering methods, Materials (Basel), 10, 1255, 10.3390/ma10111255
Kwon, 2014, Effect of milling time on dual-nanoparticulate-reinforced aluminum alloy matrix composite materials, Mater. Sci. Eng. A, 590, 338, 10.1016/j.msea.2013.10.046