Microwave and spark plasma sintering of carbon nanotube and graphene reinforced aluminum matrix composite

Archives of Civil and Mechanical Engineering - Tập 18 Số 4 - Trang 1042-1054 - 2018
Ehsan Ghasali1, P. Sangpour1, Alireza Jam1, Hosein Rajaei1, Kamyar Shirvanimoghaddam2, Touradj Ebadzadeh1
1Ceramic Department, Materials and Energy Research Center, Alborz, Iran
2Carbon Nexus, Institute for Frontier Materials, Deakin University, VIC 3216, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Shirvanimoghaddam, 2017, Carbon fiber reinforced metal matrix composites: fabrication processes and properties, Compos. A Appl. Sci. Manuf., 92, 10.1016/j.compositesa.2016.10.032

Ghasali, 2017, Evaluation of microstructure and mechanical properties of Al-TaC composites prepared by spark plasma sintering process, J. Alloys Compd., 705, 283, 10.1016/j.jallcom.2017.02.144

Torralba, 2003, P/M aluminum matrix composites: an overview, J. Mater. Process. Technol., 133, 203, 10.1016/S0924-0136(02)00234-0

Ghasali, 2015, WC-Co particles reinforced aluminum matrix by conventional and microwave sintering, Mater. Res., 18, 1197, 10.1590/1516-1439.027115

Das, 2014, Fabrication and heat treatment of ceramic-reinforced aluminium matrix composites-a review, Int. J. Mech. Mater. Eng., 9, 6, 10.1186/s40712-014-0006-7

Majidian, 2016, Effect of heating method on microstructure and mechanical properties of zircon reinforced aluminum composites, Mater. Res., 19, 1443, 10.1590/1980-5373-mr-2016-0390

Chawla, 1998, Effect of SiC volume fraction and particle size on the fatigue resistance of a 2080 Al/SiCp composite, Metall. Mater. Trans. A, 29, 2843, 10.1007/s11661-998-0325-5

Ghasali, 2016, Low temperature sintering of aluminum-zircon metal matrix composite prepared by spark plasma sintering, Mater. Res., 19, 1189, 10.1590/1980-5373-MR-2016-0395

Bakshi, 2010, Carbon nanotube reinforced metal matrix composites – a review, Int. Mater. Rev., 55, 41, 10.1179/095066009X12572530170543

Saheb, 2012, Spark plasma sintering of metals and metal matrix nanocomposites: a review, J. Nanomater., 2012, 18, 10.1155/2012/983470

Ghasali, 2016, Microwave sintering of aluminum-ZrB2 composite: focusing on microstructure and mechanical properties, Mater. Res., 19, 765, 10.1590/1980-5373-MR-2015-0799

Bodunrin, 2015, Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics, J. Mater. Res. Technol., 4, 434, 10.1016/j.jmrt.2015.05.003

Singla, 2015, CNT reinforced aluminium matrix composite – a review, Mater. Today Proc., 2, 2886, 10.1016/j.matpr.2015.07.248

Liao, 2011, A simple approach to prepare Al/CNT composite: Spread–Dispersion (SD) method, Mater. Lett., 65, 2742, 10.1016/j.matlet.2011.05.067

Abolhasani, 2017, PVDF/graphene composite nanofibers with enhanced piezoelectric performance for development of robust nanogenerators, Compos. Sci. Technol., 138, 49, 10.1016/j.compscitech.2016.11.017

Shirvanimoghaddam, 2017, Cheetah skin structure: a new approach for carbon-nano-patterning of carbon nanotubes, Compos. A Appl. Sci. Manuf., 95, 304, 10.1016/j.compositesa.2017.01.023

Tjong, 2013, Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets, Mater. Sci. Eng. R Rep., 74, 281, 10.1016/j.mser.2013.08.001

Yue, 2013, Interface reaction of CNTs/Al composites fabricated by high energy ball milling, Adv. Mater. Res. Trans. Tech. Publ., 90

Morsi, 2010, Characterization and spark plasma sintering of mechanically milled aluminum-carbon nanotube (CNT) composite powders, J. Compos. Mater., 44, 1991, 10.1177/0021998310361990

Pérez-Bustamante, 2010, Microstructural characterization of Al-MWCNT composites produced by mechanical milling and hot extrusion, J. Alloys Compd., 495, 399, 10.1016/j.jallcom.2009.10.099

Yan, 2016, A quantitative method to characterize the Al 4C 3-formed interfacial reaction: the case study of MWCNT/Al composites, Mater. Charact., 112, 213, 10.1016/j.matchar.2015.12.031

Desai, 2005, Mechanics of the interface for carbon nanotube–polymer composites, Thin-Walled Struct., 43, 1787, 10.1016/j.tws.2005.07.003

Miracle, 2001

Alfonso, 2015, FEA evaluation of the Al4C3 formation effect on the Young's modulus of carbon nanotube reinforced aluminum matrix composites, Compos. Struct., 127, 420, 10.1016/j.compstruct.2015.03.032

Wang, 2015, Synergy effect of reinforcement particle, fiber and matrix on wear resistance of hybrid metal matrix composite fabricated by low pressure infiltration process, Mater. Des., 66, 498, 10.1016/j.matdes.2014.06.025

Ghasali, 2017, Production of Al-SiC-TiC hybrid composites using pure and 1056 aluminum powders prepared through microwave and conventional heating methods, J. Alloys Compd., 690, 512, 10.1016/j.jallcom.2016.08.145

Kim, 2014, Hot extrusion of A356 aluminum metal matrix composite with carbon nanotube/Al2O3 hybrid reinforcement, Metall. Mater. Trans. A, 45, 2636, 10.1007/s11661-014-2185-5

Bakshi, 2010, Carbon nanotube reinforced metal matrix composites – a review, Int. Mater. Rev., 55, 41, 10.1179/095066009X12572530170543

Kumar, 2014, Graphene reinforced metal matrix composite (GRMMC): a review, Proc. Eng., 97, 1033, 10.1016/j.proeng.2014.12.381

Li, 2015, Synergistic strengthening effect of graphene-carbon nanotube hybrid structure in aluminum matrix composites, Carbon N. Y., 95, 419, 10.1016/j.carbon.2015.08.014

Ghasali, 2017, Fabrication of magnesium-boron carbide metal matrix composite by powder metallurgy route: comparison between microwave and spark plasma sintering, J. Alloys Compd., 697, 200, 10.1016/j.jallcom.2016.12.146

Ghasali, 2016, Vanadium carbide reinforced aluminum matrix composite prepared by conventional, microwave and spark plasma sintering, J. Alloys Compd., 688, 527, 10.1016/j.jallcom.2016.07.063

Munir, 2006, The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method, J. Mater. Sci., 41, 763, 10.1007/s10853-006-6555-2

Kim, 2013, Fabrication of A356 aluminum alloy matrix composite with CNTs/Al2O3 hybrid reinforcements, Mater. Sci. Eng. A, 573, 92, 10.1016/j.msea.2013.02.041

Fatemi, 2016, Recent developments concerning the dispersion of carbon nanotubes in surfactant/polymer systems by MD simulation, J. Nanostruct. Chem., 6, 29, 10.1007/s40097-015-0175-9

Shin, 2013, Strengthening behavior of chopped multi-walled carbon nanotube reinforced aluminum matrix composites, Mater. Charact., 83, 170, 10.1016/j.matchar.2013.05.018

Kwon, 2009, Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites, Carbon N.Y., 47, 570, 10.1016/j.carbon.2008.10.041

Bakshi, 2009, Interface in carbon nanotube reinforced aluminum silicon composites: thermodynamic analysis and experimental verification, J. Alloys Compd., 481, 207, 10.1016/j.jallcom.2009.03.055

Ghasali, 2017, Preparation of silicon carbide/carbon fiber composites through high-temperature spark plasma sintering, J. Asian Ceram. Soc., 5, 10.1016/j.jascer.2017.10.004

Al-Aqeeli, 2013, Processing of CNTs reinforced Al-based nanocomposites using different consolidation techniques, J. Nanomater., 2013, 125, 10.1155/2013/370785

Esawi, 2010, Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites, Compos. Sci. Technol., 70, 2237, 10.1016/j.compscitech.2010.05.004

Pang, 2009, Effect of adding carbon nanotubes on stress of Fe3Al intermetallics, Trans. Nonferrous Met. Soc. China, 19, 1201, 10.1016/S1003-6326(08)60429-X

Le, 2013, Structure and strength of aluminum with sub-micrometer/micrometer grain size prepared by spark plasma sintering, Mater. Des., 49, 360, 10.1016/j.matdes.2013.01.018

Ci, 2006, Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum, Acta Mater., 54, 5367, 10.1016/j.actamat.2006.06.031

Tham, 2001, Effect of limited matrix–reinforcement interfacial reaction on enhancing the mechanical properties of aluminium–silicon carbide composites, Acta Mater., 49, 3243, 10.1016/S1359-6454(01)00221-X

Bisht, 2017, Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering, Mater. Sci. Eng. A, 695, 20, 10.1016/j.msea.2017.04.009

Oghbaei, 2010, Microwave versus conventional sintering: a review of fundamentals, advantages and applications, J. Alloys Compd., 494, 175, 10.1016/j.jallcom.2010.01.068

Ghasali, 2018, Mechanical and microstructural properties of WC-based cermets: a comparative study on the effect of Ni and Mo binder phases, Ceram. Int., 44, 2283, 10.1016/j.ceramint.2017.10.189

Ghasali, 2017, Evaluation of microstructure and mechanical properties of Al-TiC metal matrix composite prepared by conventional, microwave and spark plasma sintering methods, Materials (Basel), 10, 1255, 10.3390/ma10111255

Kwon, 2014, Effect of milling time on dual-nanoparticulate-reinforced aluminum alloy matrix composite materials, Mater. Sci. Eng. A, 590, 338, 10.1016/j.msea.2013.10.046

Ghasali, 2017, Effect of Al and Mo addition on phase formation, mechanical and microstructure properties of spark plasma sintered iron alloy, Mater. Today Commun., 13, 221, 10.1016/j.mtcomm.2017.10.005