Microwave Response of Perfect YBa2Cu3O7−x Thin Films Deposited on CeO2-Buffered Saphire: A Probe for Pairing Symmetry
Tóm tắt
Microwave surface impedance, Z
s(T), of epitaxial YBCO thin films deposited on CeO2-buffered sapphire substrates, was measured at several discrete frequencies within the range 5–134 GHz by use of coplanar resonator and end-plate cavity resonator techniques. The main features of obtained experimental results are as follows: (i) surface resistance R
s(T) at low temperatures obeys the exponential law: R
s(T) = R
res+R
0⋅exp [−δ/T] with a small gap δ value (δ≈ 0.7 T
c); (ii) the most perfect quasi-single-crystalline films reveal a distinct two-peak structure of R
s(T) dependence, which is not observable in films with a less ordered crystal structure. These features are believed to reveal some intrinsic electron properties of such films, namely: (i) mixed (d+is) type symmetry of electron pairing, and (ii) dominant role of extended c-oriented defects (e.g., edge dislocation arrays or twin planes) in quasiparticles scattering for the most perfect films, which demonstrate the two-peak anomalous R
s(T) behavior.
Tài liệu tham khảo
1 D. A. Bonn, S. Kamal, K. Zhang, R. Liang, D. J. Baar, E. Klein, and W. N. Hardy, Phys. Rev. B 50, 4051 (1994).
2 S. Hensen, G. Müller, C. T. Rieck, and K. Scharnberg, Phys. Rev. B 56, 6237 (1997).
3 M. R. Trunin, J. Supercond. 11, 381 (1998).
4 A. Hosseini, R. Harris, S. Kamal, P. Dosanjh, J. Preston, R. Liang, W. N. Hardy, and D. A. Bonn, Phys. Rev. B 6, 1349 (1999).
5 A. J. Berlinsky, D. A. Bonn, R. Harris, and C. Kallin, Phys. Rev. B 61, 9088 (2000).
6 M. I. Tsindlekht, E. B. Sonin, M. A. Golosovsky, D. Davidov, X. Castel, M. Guilloux-Viry, and A. Perrin, Phys. Rev. B 61, 1596 (2000).
7 R. Harris, A. Hosseini, S. Kamal, P. Dosanjh, R. Liang, W. N. Hardy, and D. A. Bonn, Phys. Rev. B 64, 064509 (2001).
8 P. J. Turner, R. Harris, S. Kamal, M. E. Hayden, D. M. Broun, D. C. Morgan, A. Hosseini, P. Dosanjh, G. Mullins, J. S. Preston, R. Liang, D. A. Bonn, and W. N. Hardy, Phys. Rev. Lett. 90, 237005 (2003).
9 S. özcan, P. J. Turner, J. R. Waldram, R. J. Drost, P. H. Kes, and D. M. Broun, Phys. Rev. B 73, 064506 (2006) cond-mat/0508621 vl (2005).
10 R. Harris, P. J. Turner, S. Kamal, A. R. Hosseini, P. Dosanjh, G. K. Mullins, J. S. Bobowski, C. P. Bidinosti, D. M. Broun, R. Liang, W. N. Hardy, and D. A. Bonn, cond-mat/0605434 vl (2006).
11 P. J. Hirschfeld, W. O. Putikka, and D. J. Scalapino, Phys. Rev. Lett. 71, 3705 (1993); Phys. Rev. B 50, 10250 (1994).
12 C. T. Rieck, K. Scharnberg, and J. Ruvalds, Phys. Rev. B 60, 12432 (1999).
13 M. H. Hettler and P. J. Hirschfeld, Phys. Rev. B 61, 11313 (2000).
14 D. Duffy, P. J. Hirschfeld, and D. J. Scalapino, Phys. Rev. B 64, 224522 (2001).
15 W. A. Atkinson and P. J. Hirschfeld, Phys. Rev. Lett. 88, 187003 (2002).
16 A. C. Durst and P. A. Lee, Phys. Rev. B 65, 094501 (2002).
17 D. E. Sheehy, Phys. Rev. B 68, 054529 (2003).
18 D. J. Scalapino, Phys. Rep. 250, 329 (1995).
19 C. G. Tsuei and J. R. Kirtley, Rev. Mod. Phys. 72, 969 (2000).
20 Q. P. Li, B. E. C. ColtenBah, and R. Joynt, Phys. Rev. B 48, 437 (1992).
21 M. Sigrist, D. B. Bailey, and R. B. Laughlin, Phys. Rev. Lett. 74, 3249 (1995).
22 M. Sigrist, Prog. Theor. Phys. 99, 899 (1998).
23 M. Matsumoto and H. Shiba, J. Phys. Soc. Jpn. 64, 3384 (1995); 64, 4867 (1995); 65, 2194 (1996).
24 J.-X. Zhu, W. Kim, and C. S. Ting, Phys. Rev. B 57, 13410 (1998).
25 M. H. S. Amin, S. N. Rashkeev, M. Coury, A. N. Omelyanchouk, and A. M. Zagoskin, Phys. Rev. B 66, 174515 (2002).
26 L. J. Buchholtz, M. Palumbo, D. Rainer, and J. A. Sauls, J. Low Temp. Phys. 101, 1079 (1995); 101, 1099 (1995).
27 M. Fogelström and S.-K. Yip, Phys. Rev. B 57, R14060 (1998).
28 A. A. Golubov and M. Yu. Kupriyanov, Pis'ma Ν ZhETF 67, 478 (1998).
29 J. J. Hogan-O'Neill, A. M. Martin, and J. F. Annet, Phys. Rev. B 60, 3568 (1999).
30 M. Fogelström , D. Rainer, and J. A. Sauls, Phys. Rev. Lett. 79, 281 (1997).
31 M. Covington, M. Aprili, E. Paraoanu, L. H. Greene, F. Xu, J. Zhu, and C. A. Mirkin, Phys. Rev. Lett. 79, 277 (1997).
32 J. Y. T. Wei, N.-C. Yeh, D. F. Garrigus, and M. Strasi, Phys. Rev. Lett. 81, 2542 (1998).
33 I. Lubimova and G. Koren, Phys. Rev. B 68, 224519 (2003).
34 G. Koren, L. Shkedy, and E. Polturak, Physica C 403, 45 (2004).
35 H. J. H. Smilde, A. A. Golubov, A. Ariando, G. Rijnders, J. M. Dekkers, S. Harkema, D. H. A. Blank, H. Rogalla, and H. Hilgenkamp, Phys. Rev. Lett. 95, 257001 (2005).
36 J. R. Kirtley, C. C. Tsuei, A. Ariando, C. J. M. Verwijs, S. Harkema, and H. Hilgenkamp, Nature (Phys. Sci. 2, 190 (2006).
37 J. Einfeld, P. Lahl, R. Kutzner, R. Wördenweber, and G. Kästner, Physica C 351, 103 (2001).
38 I. Vendik, Supercond. Sci. Technol. 13, 974 (2000).
39 H. J. Fink, Phys. Rev. B 58, 9415 (1998); 61, 6346 (2000).
40 M. R. Trunin, JETP Lett. 72, 583 (2000).
41 M. R. Trunin, Yu. A. Nefyodov, and H. J. Fink, JETP 91, 801 (2000).
42 H. J. Fink and M. R. Trunin, Phys. Rev. B 62, 3046 (2000).
43 M. Hein, T. Kaiser, and G. Müller, Phys. Rev. B 61, 640 (2000).
44 V. M. Pan, A. L. Kasatkin, V. A. Komashko, A. A. Kalenyuk, C. G. Tretiatchenko, A. N. Ivanyuta, and G. A. Melkov, Low Temp. Phys. 32, 497 (2006) cond-mat/0404523 vl (2004).
45 M. J. Lancaster, Passive Microwave Device Application of High-Temperature Superconductors (Cambridge University Press, Cambridge, UK, 1997).
46 V. M. Pan, V. S. Flis, V. A. Komashko, O. P. Karasevska, V. L. Svetshnikov, M. Lorenz, A. N. Ivanyuta, G. A. Melkov, E. A. Pashitskii, and H. W. Zandbergen, IEEE Trans. Appl. Supercond. 11, 3960 (2001).
47 V. M. Pan, C. G. Tretiatchenko, V. S. Flis, V. A. Komashko, E. A. Pashitskii, A. N. Ivanyuta, G. A. Melkov, W. H. Zandbergen, and V. L. Svetchnikov, J. Supercond. 16, 889 (2003).
48 S. K. Streiffer, B. M. Lairson, C. B. Eom, B. M. Clemens, J. C. Bravman, and T. H. Geballe, Phys. Rev. B 43, 13007 (1991).
49 Y. Gao, K. L. Merkle, G. Bai, H. L. Chang, and D. J. Lam, Physica C 174, 1 (1991).
50 V. L. Svetchnikov, V. M. Pan, Ch. Traeholt, and W. H. Zandbergen, IEEE Trans. Appl. Supercond. 7, 1396 (1997).
51 B. Dam, J. M. Huijbregtse, F. C. Claassen, R. C. F. van der Geest, G. Doornbos, J. H. Rector, A. M. Testa, S. Freisem, J. C. Martinez, B. Stauble-Pumpin, and R. Griessen, Nature (London) 399, 439 (1999).
52 J. M. Huijbregtse, B. Dam, R. C. F. van der Geest, F. C. Klaassen, R. Elberse, J. H. Rector, and R. Griessen, Phys. Rev. B 62, 1338 (2000).
53 B. Dam, J. M. Huijbregtse, and J. H. Rector, Phys. Rev. B 65, 064528 (2002).
54 S. Berger, D.-G. Crete, J.-P. Contour, K. Bouzehouane, J.-L. Maurice, and O. Durand, Phys. Rev. B 63, 144506 (2001).
55 L. X. Cao, T. L. Lee, F. Renner, Y. X. Su, R. L. Johnson, and J. Zegenhagen, Phys. Rev. B 65, 113402 (2002).
56 J. J. Robles, A. Bartasyte, H. P. Ng, A. Abrutis, and F. Weiss, Physica C 400, 36 (2003).
57 R. Prozorov and R. W. Giannetta, cond-mat/0605612 (2006).
58 S. Kamal, R. Liang, A. Hosseini, D. A. Bonn, and W. N. Hardy, Phys. Rev. B 58, R8933 (1998).
59 C. Panagopoulos, J. R. Cooper, and T. Xiang, Phys. Rev. B 57, 13422 (1998).
60 M. R. Trunin, Yu. A. Nefyodov, and A. F. Shevchun, Phys. Rev. Lett. 92, 067006 (2004).
61 E. Farber, G. Deutscher, B. Gorshunov, and M. Dressel, Europhys. Lett. 67, 834 (2004).
62 G. Preosti and M. Palumbo, Phys. Rev. B 55, 8430 (1997).
63 R. Modre, I. Schürrer, and E. Schachinger, Phys. Rev. B 57, 5496 (1998).
64 B. T. Geilikman, Zh. Exp. Teor. Fiz. (JETP) 34, 1042 (1958).
65 A. G. Aronov, Yu. M. Galperin, V. L. Gurevich, and V. I. Kozub, in Nonequilibrium Superconductivity, D. N. Langenberg and A. I. Larkin, eds. (Elsevier Science, Amsterdam, 1986), p. 325; Adv. Phys. 30, 539 (1981).
66 G. Blatter, V. B. Geshkenbein, and N. B. Kopnin, Phys. Rev. B 59, 14663 (1999).
67 N. B. Kopnin, J. Low Temp. Phys. 124, 209 (2001).