Microwave Energy for Expanding Perlite Ore

Journal of Applied Research and Technology - Tập 11 - Trang 823-830 - 2013
J.A. Aguilar-Garib1,2, V. García-Onofre1, U. Ortiz1,2, Zarel Valdez-Nava1
1Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, México
2Centro de Investigación, Innovación y Desarrollo en Ciencia y Tecnología, Universidad Autónoma de Nuevo León, Apodaca, NL, México

Tài liệu tham khảo

Basic facts about Perlite “The world's most versatile mineral”, Technical data sheet / No. 2–4, 1983 (online), available from: www.perliteinstitute.com. Roulia, 2006, Influence of thermal treatment on the water release and the glassystructure of perlite, J Mater Sci, 41, 5870, 10.1007/s10853-006-0325-z Klipfel, 1998, Numerical simulation and experimental validation of the turbulent combustion and perlite expansion processes in an industrial perlite expansion furnace, Flow, Turbulence and Combustion, 60, 283, 10.1023/A:1009900726809 Varuzhanyan, 2006, A mechanism of perlite expansion, Inorganic Materials, 42, 1039, 10.1134/S0020168506090202 Kreith, 2000 Deborah, 2010, Thermal Properties, 277 TERMOLITA Company Catalog (online), available from: http://www.termolita.com.mx/ Püschner Microwave System Short Technical notes (online), available from: http://www.pueschner.com/downloads/2011-08-DielectricKit4Vials_flyer.pdf] Leong Eugene, 2010, Characteristics of aluminum and magnesium based nanocomposites processed using hybrid microwave sintering, Journal of the Microwave Power and Electromagnetic Energy, 44, 14, 10.1080/08327823.2010.11689773 Agrawal, 2007, Microwave energy applied to processing of high-temperature materials, American Ceramic Society Bulletin, 87, 39 Aguilar, 1997, Microwaves as an energy source for producing magnesia - alumina spinel, Journal of the Microwave Power and Electromagnetic Energy, 32, 74, 10.1080/08327823.1997.11688326 Hotta, 2011, Complex Permittivity of Graphite, Carbon Black and Coal Powders in the Ranges of X-band Frequencies (8.2 to 12.4GHz) and between 1 and 10GHz, ISIJ International, 51, 1766, 10.2355/isijinternational.51.1766 Yoshikawa, 2003, Carbothermic Reduction of MgO by Microwave Irradiation, Materials Transactions, The Japan Institute of Metals, 44, 722 Aguilar-Garib, 2011, Thermal processing of materials, 243 Aguilar, 2005, Comparison of microwave and conventional processing of Ni-Fe manganites, 25 Kharissova, 2005, Advance in methods of forming vertically aligned carbon nanotubes by microwave, Physica Status Solidi (c), 2, 3063, 10.1002/pssc.200460754 Gomez, 2004, Comparative study of microwave and conventional processing of MgAl2O4 based materials, Ceramics International, 30, 893, 10.1016/j.ceramint.2003.10.010 Aguilar, 2000, Grafito como auxiliar térmico en el procesado de espinel MgAl2O4 mediante microondas, Ciencia UANL Universidad Autónoma de Nuevo León, 3, 274