Microtubule dynamic instability: A new model with coupled GTP hydrolysis and multistep catastrophe

BioEssays - Tập 35 Số 5 - Trang 452-461 - 2013
Hugo Bowne‐Anderson1,2, Marija Žanić1,2, Monika Kauer1, Jonathon Howard1
1Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
2These two authors contributed equally to this work.

Tóm tắt

AbstractA key question in understanding microtubule dynamics is how GTP hydrolysis leads to catastrophe, the switch from slow growth to rapid shrinkage. We first provide a review of the experimental and modeling literature, and then present a new model of microtubule dynamics. We demonstrate that vectorial, random, and coupled hydrolysis mechanisms are not consistent with the dependence of catastrophe on tubulin concentration and show that, although single‐protofilament models can explain many features of dynamics, they do not describe catastrophe as a multistep process. Finally, we present a new combined (coupled plus random hydrolysis) multiple‐protofilament model that is a simple, analytically solvable generalization of a single‐protofilament model. This model accounts for the observed lifetimes of growing microtubules, the delay to catastrophe following dilution and describes catastrophe as a multistep process.

Từ khóa


Tài liệu tham khảo

10.1038/312237a0

10.1083/jcb.107.4.1437

10.1016/j.cell.2011.10.037

10.1016/S0006-3495(95)79953-2

10.1083/jcb.118.5.1097

10.1103/PhysRevLett.70.1347

10.1091/mbc.3.10.1155

10.1083/jcb.108.3.931

10.1083/jcb.114.1.73

10.1002/cm.970180106

10.1083/jcb.130.4.909

10.1016/S0960-9822(00)00243-8

10.1091/mbc.7.4.663

10.1021/bi00387a061

10.1021/bi961325o

10.1021/bi9830765

10.1038/34465

10.1038/nature04928

10.1016/j.cub.2007.07.011

10.1016/j.ceb.2006.12.009

10.1126/science.1165401

10.1016/j.cell.2011.06.053

10.1083/jcb.129.5.1311

10.1016/S0955-0674(97)80146-9

10.1111/j.1749-6632.1986.tb38432.x

Howard J., 2001, Mechanics of Motor Proteins and the Cytoskeleton

10.1103/PhysRevE.80.031904

10.1016/j.physa.2009.10.017

10.1016/j.bpj.2008.12.3920

10.1016/j.bpj.2009.12.4306

Mirny LA, 2010, Microtubules, in vitro

10.1016/j.bpj.2011.12.059

10.1073/pnas.0910774106

10.1103/PhysRevLett.73.2372

10.1103/PhysRevE.54.5538

10.1091/mbc.3.10.1141

Margolin G, 2006, Analysis of a mesoscopic stochastic model of microtubule dynamic instability, Nat Methods, 74, 041920

10.1073/pnas.82.4.1131

Bayley PM, 1990, Microtubule dynamic instability: numerical simulation of microtubule transition properties using a lateral cap model, J Cell Sci, 95, 33, 10.1242/jcs.95.1.33

10.1016/S0006-3495(93)81091-9

10.1073/pnas.092504999

10.1529/biophysj.105.060913

10.1103/PhysRevE.83.041905

10.1091/mbc.E11-08-0688

10.1083/jcb.117.5.1031

10.1083/jcb.200301147

10.1038/nature06386

10.1371/journal.pone.0007585

10.1016/j.cell.2012.02.049

10.1016/j.cub.2012.06.068

10.1529/biophysj.105.074211

10.1083/jcb.138.1.105

10.1073/pnas.80.24.7520

10.1073/pnas.81.21.6728