Microstructures of Randall’s plaques and their interfaces with calcium oxalate monohydrate kidney stones reflect underlying mineral precipitation mechanisms

Ingo Sethmann1, Gunnar Wendt‐Nordahl2, Thomas Knoll2, Frieder Enzmann3, Ludwig Simon3, Hans‐Joachim Kleebe1
1Institut für Angewandte Geowissenschaften, Technische Universität Darmstadt, Schnittspahnstr. 9, 64287, Darmstadt, Germany
2Urologische Klinik Sindelfingen, Klinikum Sindelfingen-Böblingen, Arthur-Gruber-Str. 70, 71065, Sindelfingen, Germany
3Institut für Geowissenschaften, Johannes Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 21, 55128, Mainz, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Randall A (1937) The origin and growth of renal calculi. Ann Surg 105:1009–1027

Randall A (1940) Papillary pathology as precursor of primary renal calculus. J Urol 44:580–589

Randall A (1940) The etiology of primary renal calculus. Int Abstr Surg 71:209–240

Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB, Shao Y, Sommer AJ, Paterson RF, Kuo RL, Grynpas M (2003) Randall’s plaques of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest 111:607–616

Evan A, Lingeman J, Coe FL, Worcester E (2006) Randall’s plaque: pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int 69:1313–1318

Verrier C, Bazin D, Stéphan O, Gloter A, Verpont M-C, Frochot V, Haymann J-P, Brocheriou I, Traxer O, Daudon M, Letavernier E (2016) Topography, composition and structure of incipient Randall plaque at the nanoscale level. J Urol. doi: 10.1016/j.juro.2016.04.086

Khan SR, Rodriguez DE, Gower LB, Monga M (2012) Association of Randall’s plaque with collagen fibers and membrane vesicles. J Urol 187:1094–1100

Evan AP, Coe FL, Lingeman JE, Shao Y, Sommer AJ, Bledsoe SB, Anderson JC, Worcester EM (2007) Mechanism of the formation of human calcium oxalate renal stones on Randall’s plaque. Anat Rec 290:1315–1323

Daudon M, Traxer O, Jungers P, Bazin D (2007) Stone morphology suggestive of Randall’s plaque. In: Evan AP, Lingeman JE, Williams JC (eds) Renal stone disease, 1st Annual international urolithiasis research symposium. American institute of physics conference proceedings, vol 900, pp 26–34

Carpentier X, Bazin D, Jungers P, Reguer S, Thiaudière D, Daudon M (2010) The pathogenesis of Randall’s plaque: a papilla cartography of Ca compounds through a ex vivo investigation based on XANES spectroscopy. J Synchrotron Rad 17:374–379

Bushinsky DA (2003) Nephrolithiasis: site of the initial solid phase. J Clin Invest 111:602–605

Coe FL, Evan AP, Worcester EM, Lingeman JE (2010) Three pathways for human kidney stone formation. Urol Res 38:147–160

Daudon M, Donsimoni R, Hennequin C, Fellahi S, LeMoel G, Paris M, Troupel S, Lacour B (1995) Sex- and age-related composition of 10,617 calculi analyzed by infrared spectroscopy. Urol Res 23:319–326

Knoll T, Schubert AB, Fahlenkamp D, Leusmann DB, Wendt-Nordahl G, Schubert G (2011) Urolithiasis through the ages: data on more than 200,000 urinary stone analyses. J Urol 185:1304–1311

Wendt-Nordahl G, Evan AP, Spahn M, Knoll T (2008) Kalziumoxalatsteinbildung. Neue pathogenetische Aspekte einer alten Erkrankung. (Calcium oxalate stone formation. New pathogenic aspects of an old disease.). Urologe 47:538–544

Kim SC, Coe FL, Tinmouth WW, Kuo RL, Paterson RF, Parks JH, Munch LC, Evan AP, Lingeman JE (2005) Stone formation is proportional to papillary surface coverage by Randall’s plaques. J Urol 173:117–119

Meyer JL, Bergert JH, Smith LH (1975) Epitaxial relationships in urolithiasis: the calcium oxalate monohydrate–hydroxyapatite system. Clin Sci Mol Med 49:369–374

Ebrahimpour A, Perez L, Nancollas GH (1991) Induced crystal growth of calcium oxalate monohydrate at hydroxyapatite surfaces. The influence of human serum albumin, citrate, and magnesium. Langmuir 7:577–583

Tiselius H-G, Lindbäck B, Fornander A-M, Nilsson M-A (2009) Studies on the role of calcium phosphate in the process of calcium oxalate crystal formation. Urol Res 37:181–192

Sethmann I, Grohe B, Kleebe H-J (2014) Replacement of hydroxylapatite by whewellite: implications for kidney stone formation. Mineral Mag 78:91–100

Finleyson B (1978) Physicochemical aspects of urolithiasis. Kidney Int 13:344–360

Nancollas GH (1983) Crystallization theory relating to urinary stone formation. World J Urol 1:131–137

Wang L, Nancollas GH (2008) Calcium orthophosphates: crystallization and dissolution. Chem Rev 108:4628–4669

Putnis A, Prieto M, Fernández-Díaz L (1995) Fluid supersaturation and crystallization in porous media. Geol Mag 132:1–13

Prieto M (2014) Nucleation and supersaturation in porous media (revisited). Mineral Mag 78:1437–1447

Cristoffersen MR, Christoffersen J, Kibalczyc W (1990) Apparent solubilities of two amorphous calcium phosphates and of octacalcium phosphate in the temperature range 30–42 °C. J Cryst Growth 106:349–354

Rakovan J (2002) Phosphates—geochemical, geobiological, and materials importance. In: Kohn MJ, Rakovan J, Hughes JM (eds) Growth and surface properties of apatite. Reviews in mineralogy and geochemistry, vol 48. Mineralogical Society of America, Washington, DC, pp 51–86

Hunter GK (2013) Role of osteopontin in modulation of hydroxyapatite formation. Calcif Tissue Int 93:348–354

Chidambaram A, Rodriguez D, Khan S, Gower L (2015) Biomimetic Randall’s plaque as an in vitro model system for studying the role of acidic biopolymers in idiopathic stone formation. Urolithiasis 43(Suppl. 1):77–92

Gower LB, Amos FF, Khan SR (2010) Mineralogical signatures of stone formation mechanisms. Urol Res 38:281–292

Streit J, Tran-Ho L-C, Königsberger E (1998) Solubility of the three calcium oxalate hydrates in sodium chloride solutions and urine-like liquors. Monatsh Chem 129:1225–1236

Siener R, Hesse A (2002) The effect of different diets on urine composition and the risk of calcium oxalate crystallisation in healthy subjects. Eur Urol 42:289–296

Pak CYC, Adams-Huet B, Poindexter JR, Pearle MS, Peterson RD, Moe OW (2004) Relative effect of urinary calcium and oxalate on saturation of calcium oxalate. Kidney Int 66:2032–2037

Hoyer JR (1994) Uropontin in urinary calcium stone formation. Miner Electrolyte Metab 20:385–392

Taller A, Grohe B, Rogers KA, Goldberg HA, Hunter GK (2007) Specific adsorption of osteopontin and synthetic polypeptides to calcium oxalate monohydrate crystals. Biophys J 93:1768–1777

Kok DJ, Khan SR (1994) Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int 46:847–854

Taylor ER, Stoller ML (2015) Vascular theory of the formation of Randall plaques. Urolithiasis 43(Suppl. 1):S41–S45

Khan SR, Canales BK (2015) Unified theory on the pathogenesis of Randall’s plaques and plugs. Urolithiasis 43(Suppl. 1):S109–S123

Hunter GK, Nyburg SC, Pritzker KPH (1986) Hydroxyapatite formation in collagen, gelatin, and agarose gels. Coll Relat Res 6:229–238

Henisch HK (1988) Crystals in gels and Liesegang rings. Cambridge University Press, Cambridge

Evan AP, Coe FL, Rittling SR, Bledsoe SM, Shao Y, Lingeman JE, Worcester EM (2005) Apatite plaque particles in the inner medulla of kidneys of calcium oxalate stone formers: osteopontin localization. Kidney Int 68:145–154

Beck GR, Zerler B, Moran E (2000) Phosphate is a specific signal for induction of osteopontin gene expression. PNAS 97:8352–8357

Chen NX, O’Neill KD, Duan D, Moe SM (2002) Phosphorus and uremic serum up-regulate osteopontin expression in vascular smooth muscle cells. Kidney Int 62:1724–1731

Kohri K, Nomura S, Kitamura Y, Nagata T, Yoshioka K, Iguchi M, Yamate T, Umekawa T, Suzuki Y, Sinohara H, Kurita T (1993) Structure and expression of the mRNA encoding urinary stone protein (osteopontin). J Biol Chem 268:15180–15184

Wang Y-W, Christenson HK, Meldrum FC (2014) Confinement increases the lifetimes of hydroxyapatite precursors. Chem Mater 26:5830–5838

Rajasekharan AK, Andersson M (2015) Role of nanoscale confinement on calcium phosphate formation at high supersaturation. Cryst Growth Des 15:2775–2780

Amos FF, Dai L, Kumar R, Khan SR, Gower LB (2009) Mechanisms of formation of concentrically laminated spherules: implication to Randall’s plaque and stone formation. Urol Res 37:11–17

Sunagawa I (1999) Growth and morphology of crystals. Forma 14:147–166

Ahlstrand C, Larsson L, Tiseluis H-G (1984) Variations in urine composition during the day in patients with calcium oxalate stone disease. J Urol 131:77–81

Tiselius H-G (2011) A hypothesis of calcium stone formation: an interpretation of stone research during the past decades. Urol Res 39:231–243

Aggarwal A, Tessadri R, Grohe B (2015) Protein–crystal interactions in calcium oxalate kidney stone formation. Int J Biochem Biophys 3:34–48

Koutsoukos PG, Sheehan ME, Nancollas GH (1981) Epitaxial considerations in urinary stone formation. II. The oxalate–phosphate system. Invest Urol 18:358–363

Khan SR (1997) Calcium phosphate/calcium oxalate crystal association in urinary stones: implications for heterogeneous nucleation of calcium oxalate. J Urol 157:376–383

Ito S, Saito T, Amano K (2004) In vitro apatite induction by osteopontin: interfacial energy for hydroxyapatite nucleation on osteopontin. J Biomed Mater Res 69A:11–16