Microstructures and microwave dielectric properties of (Ba1−xSrx)4(Sm0.4Nd0.6)28/3Ti18O54 solid solutions
Tóm tắt
(Ba1−xSrx)4(Sm0.4Nd0.6)28/3Ti18O54 (x = 0.02, 0.04, 0.06, 0.08, 0.1) solid solutions were prepared by the conventional solid-state reaction process. It was found that (Ba1−xSrx)4(Sm0.4Nd0.6)28/3Ti18O54 ceramics are fully composed of BaSm2Ti4O12 and BaNd2Ti5O14 phases for all the compositions. The increasing x value (0.02 ≤ x ≤ 0.1) in ((Ba1−xSrx)4(Sm0.4Nd0.6)28/3Ti18O54 ceramics can not only obtain high Q × f value but also effectively enhance the permittivity (εr). The (Ba1−xSrx)4(Sm0.4Nd0.6)28/3Ti18O54 ceramic with x = 0.08, sintered at 1440 °C for 4 h, shows excellent microwave dielectric properties of permittivity (εr) ≈ 93.19, quality factor (Q × f) ≈ 9770.14 GHz (at 3.415 GHz), and almost near-zero temperature coefficient of resonant frequency (τf) ≈ +4.56 ppm/°C.
Tài liệu tham khảo
Wersing W. Microwave ceramics for resonators and filters. Current Opinion in Solid State and Materials Science 1996, 1: 715–731.
Bolton RL. Temperature compensating ceramic capacitors in the system barium-rare earth oxide titania. Ph.D. Thesis. The University of Illinois, 1968.
Sremoolanathan H, Sebastian MT, Pezholil M. Dielectric resonators in BaO–Ln2O3–5TiO2 system (Ln = La, Pr, Nd, Sm). British Ceramic Transactions 1996, 95: 79–81.
Ohsato H. Science of tungstenbronze-type like Ba6–3xR8+2xTi18O54 (R = rare earth) microwave dielectric solid solutions. J Eur Ceram Soc 2001, 21: 2703–2711.
Valant M, Suvorov D, Rawn CJ. Intrinsic reasons for variations in dielectric properties of Ba6-3xR8+2xTi18O54 (R = LA–Gd) solid solutions. Jpn J Appl Phys 1999, 38: 2820.
Varfolomeeva MB, Miranov AS. The synthesis and homogeneity ranges of the phases Ba6-3xR8+2xTi18O54. Russ J Inorg Chem 1988, 33: 607.
Kolar D, Skapin SD, Suvorov D. Phase equlibria in the system BaO–TiO2–Gd2O3. Acta Chimica Slovenica 1999, 46: 193–202.
Kolar D, Gaberšček S, Stadler Z, et al. High stability, low loss dielectrics in the system BaO–Nd2O3–TiO2–Bi2O3. Ferroelectrics 1980, 27: 269–272.
Ohsato H, Ohhashi T, Kato H, et al. Microwave dielectric properties and structure of the Ba6-3xR8+2xTi18O54 solid solutions. Jpn J Appl Phys 1995, 34: 187–191.
Yao X, Lin H, Zhao X, et al. Effects of Al2O3 addition on the microstructure and microwave dielectric properties of Ba4Nd9.33Ti18O54 ceramics. Ceram Int 2012, 38: 6723–6728.
Ohsato H, Mizuta M, Ikoma T, et al. Microwave dielectric properties of tungsten bronze-type Ba6-3xR8+2xTi18O54 (R = La, Pr, Nd and Sm) solid solutions. J Ceram Soc Jpn 1998, 106: 178–182.
Pei J, Yue Z, Zhao F, et al. Effects of silver doping on the sol–gel-derived Ba6-3xR8+2xTi18O54 microwave dielectric ceramics. J Am Ceram Soc 2007, 90: 3131–3137.
Ubic R, Reaney IM, Lee WE, et al. Properties of the microwave dielectric phase Ba6-3xR8+2xTi18O54. Ferroelectrics 1999, 228: 271–282.
Huang X, Zhang J, Wang W, et al. Effect of pH value on electromagnetic loss properties of Co–Zn ferrite prepared via coprecipitation method. J Magn Magn Mater 2016, 405: 36–41.
Huang X, Zhang J, Xiao S, et al. Unique electromagnetic properties of the zinc ferrite nanofiber. Mater Lett 2014, 124: 126–128.
Sebastian MT. Dielectric Materials for Wireless Communication. Elsevier, 2010.
Nagatomo T, Otagiri T, Suzuki M, et al. Microwave dielectric properties and crystal structure of the tungstenbronze-type like (Ba1-αSrα)6(Nd1-βYβ)8Ti18O54 solid solutions. J Eur Ceram Soc 2006, 26: 1895–1898.
Zhu J, Kipkoech ER, Lu W. Effects of LnAlO3 (Ln = La, Nd, Sm) additives on the properties of Ba4.2Nd9.2Ti18O54 ceramics. J Eur Ceram Soc 2006, 26: 2027–2030.
Zheng H, Reaney IM, Muir D, et al. Effect of glass additions on the sintering and microwave properties of composite dielectric ceramics based on BaO–Ln2O3–TiO2 (Ln = Nd, La). J Eur Ceram Soc 2007, 27: 4479–4487.
Jacob KS, Satheesh R, Ratheesh R. Preparation and microwave characterization of BaNd2-xSmxTi4O12 (0 = x = 2) ceramics and their effect on the temperature coefficient of dielectric constant in polytetrafluoroethylene composites. Mater Res Bull 2009, 44: 2022–2026.
Xia H-T, Kuang X-J, Wang C-H, et al. Conductivity and dielectric loss of tungsten-bronze-type BaNd2Ti4O12 microwave ceramics. Acta Phys-Chim Sin 2011, 27: 2009–2014.
Wu M-C, Hsieh M-K, Yen C-W, et al. Low sintering BaNd2Ti4O12 microwave ceramics prepared by CuO thin layer coated powder. J Eur Ceram Soc 2007, 27: 2835–2839.
Long M, Zhuang W, Tang B, et al. Microwave dielectric properties of Ba0.75Sr0.25(NdxBi1–x)2Ti4O12 solid solutions. Ceram–Silikáty 2011, 55: 373–377.
Long M, Zhuang W, Tang B, et al. Effect of molar ratio of Nd/Bi on the microwave ceramic properties of Ba0.75Sr0.25(NdxBi1–x)2Ti4O12 microwave materials. Piezoelectrics & Acoustooptics 2012, 34: 106–109. (in Chinese)
Zhang Y-D, Zhou D, Guo J, et al. Microwave dielectric properties of the (1–x)(Mg0.95Zn0.05)TiO3–x(Ca0.8Sm0.4/3) TiO3 temperature stable ceramics. Mater Lett 2014, 32: 200–202.
Pang L-X, Zhou D, Cai C-L, et al. Infrared spectroscopy and microwave dielectric properties of ultra-low temperature firing (K0.5La0.5)MoO4 ceramics. Mater Lett 2013, 92: 36–38.
Zhou H, Liu X, Chen X, et al. Ba4LiNb3–xSbxO12: Phase evolution, microstructure and optimized microwave dielectric properties. Mater Lett 2013, 96: 199–202.
Wang X, Fu R, Chen X. Crystal structure and microwave dielectric properties of (Ba1-aSra)Sm2Ti4O12 solid solutions. J Mater Sci: Mater El 2016, 27: 11137–11141.
Webhoffer A, Feltz A. Microwave dielectric properties of ceramics of the system Ba6–x(SmyNd1-y)8+2x/3Ti18O54. J Mater Sci Lett 1999, 18: 719–721.
Kagomiya I, Suzuki M, Kakimoto K, et al. Microwave dielectric properties of tungsten bronze type like (Ba1-aSra)6-3xR8+2xTi18O54 (R = Sm, Nd) solid solutions. J Eur Ceram Soc 2007, 27: 3059–3062.
Huang X, Chen Y, Yu J, et al. Fabrication and electromagnetic loss properties of Fe3O4 nanofibers. J Mater Sci: Mater El 2015, 26: 3474–3478.
Huang X, Zhang J, Liu Z, et al. Facile preparation and microwave absorption properties of porous hollow BaFe12O19/CoFe2O4 composite microrods. J Alloys Compd 2015, 648: 1072–1075.
Melvin GJH, Ni Q-Q, Natsuki T. Electromagnetic wave absorption properties of barium titanate/carbon nanotube hybrid nanocomposites. J Alloys Compd 2014, 615: 84–90.
Zheng XH, Chen XM. Dielectric ceramics with tungsten bronze structure in BaO–Nd2O3–TiO2–Nb2O5 system. J Mater Res 2002, 17: 1664–1670.
Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst 1976, A32: 751–767.
Chen XM, Li Y. A-and B site cosubstituted Ba6–3xSm8+2xTi18O54 microwave dielectric ceramics. J Am Ceram Soc 2002, 85: 579–584.