Microstructure, stress and optical properties of CdTe thin films laser-annealed by using an 808-nm diode laser: Effect of the laser scanning velocity

Nam-Hoon Kim1, Chan Il Park1, Hyun-Yong Lee2
1Department of Electrical Engineering, Chosun University, Gwangju, Korea
2Faculty of Applied Chemical Engineering, Chonnam National University, Gwangju, Korea

Tóm tắt

A continuous wave 808-nm diode laser was used for the laser annealing process of CdTe thin films at various laser scanning velocities by using a galvanometric mirror. The grains in the laserannealed CdTe thin films grew along the C (111), H (110) and C (311) planes. The lattice constants of the CdTe thin films reached a minimum at a laser annealing velocity of 167 mm/s due to the disintegration of some large grain. The optical band gap energy of the CdTe thin films was inversely proportional to the lattice constant, showing 1.439 eV and 1.474 eV for the CdTe thin films laserannealed with laser scanning velocities of 667 mm/s and 167 mm/s, respectively. The absorbance of the CdTe thin films showed an improved value of 2.80 in the visible spectral region after laser annealing at a laser scanning velocity of 167 mm/s with the appropriate mixture of scattering and transparent grains in CdTe thin films although the crystallinity had deteriorated and showed the small recrystallized grains under this condition.

Từ khóa


Tài liệu tham khảo

M. Hädrich, C. Kraft, C. Löffler, H. Metzner, U. Reislöhner and W. Witthuhn, Thin Solid Films 517, 2282 (2009). T. M. Razykov, G. Contreras-Puente, G. C. Chornokur, M. Dybjec, Yu. Emirov, B. Ergashev, C. S. Ferekides, A. Hubbimov, B. Ikramov, K. M. Kouchkarov, X. Mathew, D. Morel, S. Ostapenko, E. Sanchez-Meza, E. Stefanakos, H. M. Upadhyaya, O. Vigil-Galan and Yu. V. Vorobiev, Sol. Energy 83, 90 (2009). N. R. Paudel, K. A. Wieland and A. D. Compaan, Sol. Energ. Mat. Sol. C. 105, 109 (2012). M. J. Kim, J. J. Lee, S. H. Lee and S. H. Sohn, Sol. Energ. Mat. Sol. C. 109, 209 (2013). N. H. Kim, J. S. Park and W. S. Lee, J. Korean Phys. Soc. 59, 2286 (2011). Y. O. Choi, N. H. Kim, J. S. Park and W. S. Lee, Mater. Sci. Eng. B — Adv. 171, 73 (2010). A. Matsuno, E. Takii, T. Eto, K. Kurobe and K. Shibahara, Nucl. Instrum. Methods Phys. Res. B 237, 136 (2005). N. H. Kim, C. I. Park and J. Park, J. Korean Phys. Soc. 62, 502 (2013). D. Sands, J. E. Nicholls, J. H. C. Hogg, S. Chalk, F. X. Wagner, W. E. Hagstona, M. O’Neill, B. Lunn and D. E. Ashenford, J. Cryst. Growth 184/185, 114 (1998). W. Tang, Z. Chen, S. He and H. Zhang, Procedia Chem. 1, 786 (2009). L. Schade, S. Franzka, S. Hardt, H. Wiggers and N. Hartmann, Appl. Surf. Sci. 278, 336 (2013) M. G. Kang, K. H. Cho, S. M. Oh, Y. H. Do, C. Y. Kang, S. Kim and S. J. Yoon, Curr. Appl. Phys. 11, S66 (2011). Z. Said-Bacar, Y. Leroy, F. Antoni, A. Slaoui and E. Fogarassy, Appl. Surf. Sci. 257, 5127 (2011). S. G. Ryu, I. Gruber, C. P. Grigoropoulos, D. Poulikakos and S. J. Moon, Thin Solid Films 520, 6724 (2012). B. Eggleston, S. Varlamov and M. Green, IEEE T. Electron Dev. 59, 2838 (2012). G. K. Bhaumik, A. K. Nath and S. Basu, Mater. Sci. Eng. B — Adv. 52, 25 (1998). A. Medvid, V. G. Litovchenko, D. Korbutjak, S. G. Krilyuk, L. L. Fedorenko and Y. Hatanaka, Radiat. Meas. 33, 725 (2001). G. M. Davis and M. C. Gower, Appl. Phys. Lett. 50, 1286 (1987). N. H. AI-Hardan, K. T. AI-Rasoul and S. A. Hussain, J. Al-Qadisiyah Pure Sci. 15, 1 (2010). A. Mahadkar, A. Chauhan, M. Thakurdesai and D. Gaikwad, AIP Conf. Proc. 1004, 305 (2008). J. C. Osuwa and N. I. Chigbo, Chalcogenide Lett. 9, 501 (2009). B. D. Cullity, Elements of X-Ray Diffraction, 3rd ed. (Addison-Wesley, Reading, Mass., London, 1967). G. Gordillo, J. M. Flórez and L. C. Hernández, Sol. Energ. Mat. Sol. C. 37, 273 (1995). J. P. Enríquez and X. Mathew, J. Mater. Sci.-Mater. El. 16, 617 (2005). D. Geethalakshmi and N. Muthukumarasamy, J. Nanosci. Nanotechno. 1, 23 (2012). S. Neretina, N. V. Sochinskii and P. Mascher, J. Electron. Mater. 34, 786 (2005). J. H. Lee, H. Y. Lee, Y. K. Park, S. H. Shin and K. J. Park, Jpn. J. Appl. Phys. 37, 3357 (1998). C. Y. Tsay and M. C. Wang, Ceram. Int. 39, 469 (2013). N. H. Kim, S. H. Ryu, H. S. Noh and W. S. Lee, Mat. Sci. Semicon. Proc. 15, 125 (2012). G. K. Williamson and R. E. Smallman, Philos. Mag. 1, 34 (1956). D. Kim, B. Qi, D. L. Williamson and J. U. Trefny, in IEEE 1st World Conference on Photovoltaic Energy Conversion (Waikoloa, HI, USA, December 5–9, 2004), Vol. 1, pp. 338–341. M. A. Islam, Q. Huda, M. S. Hossain, M. M. Aliyu, M. R. Karim, K. Sopian and N. Amin, Curr. Appl. Phys. (2013), doi:10.1016/j.cap.2013.02.015. M. A. Taylor and H. Sinclair, Proc. Phys. Soc. 57, 126 (1945). S. Shanmugan and D. Mutharasu, Eur. Phys. J. Appl. Phys. 56, 10301 (2011). G. Zoppi, K. Durose, S. J. C. Irvine and V. Barrioz, Semicond. Sci. Technol. 21, 763 (2006). A. Romeo, D. L. Bätzner, H. Zogg and A. N. Tiwari, Thin Solid Films 361/362, 420 (2000). H. Khallaf, G. Chai, O. Lupan, L. Chow, S. Park and A. Schulte, Appl. Surf. Sci. 255, 4129 (2009). D. S. Reddy, K. N. Rao, K. R. Gunasekhar, N. K. Reddy, K. S. Kumar and P. S. Reddy, Mater. Res. Bull. 43, 3245 (2008). Y. Gu, X. Li, W. Yu, X. Gao, J. Zhao and C. Yang, J. Cryst. Growth 305, 36 (2007). S. Wageh, A. A. Higazy and M. A. Algradee, J. Mod. Phys. 2, 913 (2011). C. V. Ramana, R. J. Smith and O. M. Hussain, Phys. Status Solidi A 199, R4 (2003). K. M. Garadkar, S. J. Pawar, P. P. Hankare and A. A. Patil, J. Alloys Compd. 491, 77 (2010). D. Souri and K. Shomalian, J. Non-Cryst. Solids 355, 1597 (2009). J. M. González-Leal, A. Ledesma, A. M. Bernal-Oliva, R. Prieto-Alcón, E. Márquez, J. A. Angel and J. Cárabe, Mater. Lett. 39, 232 (1999). J. M. P. Coelho, M. A. Abreu and F. C. Rodrigues, Polym. Test. 23, 307 (2004). H. J. Koo, J. Park, B. Yoo, K. Yoo, K. Kim and N. G. Park, Inorg. Chim. Acta 361, 677 (2008). Z. S. Wang, H. Kawauchi, T. Kashima and H. Arak, Coordin. Chem. Rev. 248, 1381 (2004). G. Rothenberger, P. Comte and M. Grätzel, Sol. Energ. Mat. Sol. C. 58, 321 (1999).