Microstructure of selective laser melted nickel–titanium
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kruth, 2004, Selective laser melting of iron-based powder, J. Mater. Process. Technol., 149, 616, 10.1016/j.jmatprotec.2003.11.051
Meier, 2008, Experimental studies on selective laser melting of metallic parts, Materialwiss. Werkst., 39, 665, 10.1002/mawe.200800327
Murr, 2009, Microstructures and mechanical properties of electron beam-rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti–6Al–4V, Mater. Charact., 60, 96, 10.1016/j.matchar.2008.07.006
Mullen, 2009, Selective laser melting: a regular unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications, J. Biomed. Mater. Res. B, 89, 325, 10.1002/jbm.b.31219
Meier, 2010, Selective laser melting of NiTi shape memory components, 233
Bormann, 2012, Tailoring selective laser melting process parameters for NiTi implants, J. Mater. Eng. Perform., 21, 2519, 10.1007/s11665-012-0318-9
Habijan, 2013, The biocompatibility of dense and porous nickel–titanium produced by selective laser melting, Mater. Sci. Eng. C, 33, 419, 10.1016/j.msec.2012.09.008
Bansiddhi, 2008, Porous NiTi for bone implants: a review, Acta Biomater., 4, 773, 10.1016/j.actbio.2008.02.009
Liu, 2011, Relationship between osseointegration and superelastic biomechanics in porous NiTi scaffolds, Biomaterials, 32, 330, 10.1016/j.biomaterials.2010.08.102
Liu, 1997, On the damping behaviour of NiTi shape memory alloy, J. Phys. IV France, 7, 510, 10.1051/jp4:1997582
Es-Souni, 2005, Assessing the biocompatibility of NiTi shape memory alloys used for medical applications, Anal. Bioanal. Chem., 381, 557, 10.1007/s00216-004-2888-3
Petch, 1953, The cleavage strength of polycrystals, J. Iron Steel Inst., 174, 25
ASTM Standard F 2063-05, 2005
ASTM Standard E 112-96, 2004
Thompson, 1971, The effect of grain size on fatigue, Acta Metall., 19, 597, 10.1016/0001-6160(71)90012-5
Rodopoulos, 2008, Fatigue damage in polycrystals — part 1: the numbers two and three, Theor. Appl. Fract. Mech., 49, 61, 10.1016/j.tafmec.2007.10.007
Mughrabi, 2010, Cyclic deformation and fatigue properties of very fine-grained metals and alloys, Int. J. Fatigue, 32, 1413, 10.1016/j.ijfatigue.2009.10.007
Elahinia, 2011, Manufacturing and processing of NiTi implants: a review, Prog. Mater. Sci., 57, 911, 10.1016/j.pmatsci.2011.11.001
Thijs, 2010, A study of the microstructural evolution during selective laser melting of Ti–6Al–4V, Acta Mater., 58, 3303, 10.1016/j.actamat.2010.02.004
Chlebus, 2011, Microstructure and mechanical behaviour of Ti–6Al–7Nb alloy produced by selective laser melting, Mater. Charact., 62, 488, 10.1016/j.matchar.2011.03.006
Thijs, 2013, Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum, Acta Mater., 61, 4657, 10.1016/j.actamat.2013.04.036
Kou, 2003
Liu, 2013, Crystal structure analysis of M2 high speed steel parts produced by selective laser melting, Mater. Charact., 84, 72, 10.1016/j.matchar.2013.07.010
Ng, 2011, Microstructure and mechanical properties of selective laser melted magnesium, Appl. Surf. Sci., 257, 7447, 10.1016/j.apsusc.2011.03.004
Frenzel, 2010, Influence of Ni on martensitic phase transformations in NiTi shape memory alloys, Acta Mater., 58, 3444, 10.1016/j.actamat.2010.02.019
Bormann, 2013, Assessing the morphology of selective laser melted NiTi-scaffolds for a three-dimensional quantification of the one-way shape memory effect, Proc. SPIE, 8689, 868914, 10.1117/12.2012245
Haberland, 2012
Schumann, 2005
Escher, 1990, Metallographical preparation of NiTi shape memory alloys, Prakt. Metall. Pract. Metall., 27, 231, 10.1515/pm-1990-270503
Schinhammer, 2012, Recrystallization behavior, microstructure evolution and mechanical properties of biodegradable Fe–Mn–C(−Pd) TWIP alloys, Acta Mater., 60, 2746, 10.1016/j.actamat.2012.01.041
Garcia, 2012, Electron backscatter diffraction analysis of ZnO:Al thin films, Appl. Surf. Sci., 259, 590, 10.1016/j.apsusc.2012.07.081
König, 2001, Microstructure of polycrystalline Ti and its microelectrochemical properties by means of lectron-backscattering diffraction (EBSD), Electrochim. Acta, 47, 149, 10.1016/S0013-4686(01)00572-2
Germann, 2008, Strain fields in histological slices of brain tissue determined by synchrotron radiation-based micro computed tomography, J. Neurosci. Methods, 170, 149, 10.1016/j.jneumeth.2008.01.011
Louvis, 2011, Selective laser melting of aluminium components, J. Mater. Process. Technol., 211, 275, 10.1016/j.jmatprotec.2010.09.019
Li, 2009, Effects of processing parameters on the temperature field of selective laser melting metal powder, Powder Metall. Met. Ceram., 48, 186, 10.1007/s11106-009-9113-z
Furumoto, 2009, Study on laser consolidation of metal powder with Yb:fiber laser–temperature measurement of laser irradiation area, JLMN, 4, 22, 10.2961/jlmn.2009.01.0005
Yadroitsev, 2010, Single track formation in selective laser melting of metal powders, J. Mater. Process. Technol., 210, 1624, 10.1016/j.jmatprotec.2010.05.010
DebRoy, 1995, Physical processes in fusion welding, Rev. Mod. Phys., 67, 85, 10.1103/RevModPhys.67.85
Antonysamy, 2013, Effect of build geometry on the beta-grain structure and texture in additive manufacture of Ti6Al4V by selective electron beam melting, Mater. Charact., 84, 153, 10.1016/j.matchar.2013.07.012
Thijs, 2013, Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder, Acta Mater., 61, 1809, 10.1016/j.actamat.2012.11.052
Glicksman, 2011
Kompatscher, 2001
Burlakov, 2011, Ostwald ripening of binary alloy particles, J. Chem. Phys., 134, 024521, 10.1063/1.3530287
Garay-Reyes, 2013, Study of phase decomposition and coarsening of γ′ precipitates in Ni–12at.% Ti alloy, Mater. Charact., 83, 35, 10.1016/j.matchar.2013.05.017
Lifshitz, 1961, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids, 19, 35, 10.1016/0022-3697(61)90054-3
Wagner, 1961, Theorie der Alterung von Nierderschlägen durch Umlösen, Z. Elektrochem., 65, 581
Eberl, 1998, Deducing growth mechanisms for minerals from the shapes of crystal size distribution, Am. J. Sci., 298, 499, 10.2475/ajs.298.6.499