Microstructure of selective laser melted nickel–titanium

Materials Characterization - Tập 94 - Trang 189-202 - 2014
Therese Bormann1,2, Bert Müller1, Michael Schinhammer3, Anja Keßler2, Peter Thalmann1, Michael de Wild2
1Biomaterials Science Center, University of Basel, c/o University Hospital Basel, 4031, Basel, Switzerland
2Institute for Medical and Analytical Technologies, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, 4132 Muttenz, Switzerland
3ETH Zürich, Department of Materials, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kruth, 2004, Selective laser melting of iron-based powder, J. Mater. Process. Technol., 149, 616, 10.1016/j.jmatprotec.2003.11.051

Meier, 2008, Experimental studies on selective laser melting of metallic parts, Materialwiss. Werkst., 39, 665, 10.1002/mawe.200800327

Murr, 2009, Microstructures and mechanical properties of electron beam-rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti–6Al–4V, Mater. Charact., 60, 96, 10.1016/j.matchar.2008.07.006

Mullen, 2009, Selective laser melting: a regular unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications, J. Biomed. Mater. Res. B, 89, 325, 10.1002/jbm.b.31219

Meier, 2010, Selective laser melting of NiTi shape memory components, 233

Bormann, 2012, Tailoring selective laser melting process parameters for NiTi implants, J. Mater. Eng. Perform., 21, 2519, 10.1007/s11665-012-0318-9

Habijan, 2013, The biocompatibility of dense and porous nickel–titanium produced by selective laser melting, Mater. Sci. Eng. C, 33, 419, 10.1016/j.msec.2012.09.008

Bansiddhi, 2008, Porous NiTi for bone implants: a review, Acta Biomater., 4, 773, 10.1016/j.actbio.2008.02.009

Liu, 2011, Relationship between osseointegration and superelastic biomechanics in porous NiTi scaffolds, Biomaterials, 32, 330, 10.1016/j.biomaterials.2010.08.102

Liu, 1997, On the damping behaviour of NiTi shape memory alloy, J. Phys. IV France, 7, 510, 10.1051/jp4:1997582

Es-Souni, 2005, Assessing the biocompatibility of NiTi shape memory alloys used for medical applications, Anal. Bioanal. Chem., 381, 557, 10.1007/s00216-004-2888-3

Petch, 1953, The cleavage strength of polycrystals, J. Iron Steel Inst., 174, 25

ASTM Standard F 2063-05, 2005

ASTM Standard E 112-96, 2004

Thompson, 1971, The effect of grain size on fatigue, Acta Metall., 19, 597, 10.1016/0001-6160(71)90012-5

Rodopoulos, 2008, Fatigue damage in polycrystals — part 1: the numbers two and three, Theor. Appl. Fract. Mech., 49, 61, 10.1016/j.tafmec.2007.10.007

Mughrabi, 2010, Cyclic deformation and fatigue properties of very fine-grained metals and alloys, Int. J. Fatigue, 32, 1413, 10.1016/j.ijfatigue.2009.10.007

Elahinia, 2011, Manufacturing and processing of NiTi implants: a review, Prog. Mater. Sci., 57, 911, 10.1016/j.pmatsci.2011.11.001

Thijs, 2010, A study of the microstructural evolution during selective laser melting of Ti–6Al–4V, Acta Mater., 58, 3303, 10.1016/j.actamat.2010.02.004

Chlebus, 2011, Microstructure and mechanical behaviour of Ti–6Al–7Nb alloy produced by selective laser melting, Mater. Charact., 62, 488, 10.1016/j.matchar.2011.03.006

Thijs, 2013, Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum, Acta Mater., 61, 4657, 10.1016/j.actamat.2013.04.036

Kou, 2003

Liu, 2013, Crystal structure analysis of M2 high speed steel parts produced by selective laser melting, Mater. Charact., 84, 72, 10.1016/j.matchar.2013.07.010

Ng, 2011, Microstructure and mechanical properties of selective laser melted magnesium, Appl. Surf. Sci., 257, 7447, 10.1016/j.apsusc.2011.03.004

Frenzel, 2010, Influence of Ni on martensitic phase transformations in NiTi shape memory alloys, Acta Mater., 58, 3444, 10.1016/j.actamat.2010.02.019

Bormann, 2013, Assessing the morphology of selective laser melted NiTi-scaffolds for a three-dimensional quantification of the one-way shape memory effect, Proc. SPIE, 8689, 868914, 10.1117/12.2012245

Haberland, 2012

Schumann, 2005

Escher, 1990, Metallographical preparation of NiTi shape memory alloys, Prakt. Metall. Pract. Metall., 27, 231, 10.1515/pm-1990-270503

Schinhammer, 2012, Recrystallization behavior, microstructure evolution and mechanical properties of biodegradable Fe–Mn–C(−Pd) TWIP alloys, Acta Mater., 60, 2746, 10.1016/j.actamat.2012.01.041

Garcia, 2012, Electron backscatter diffraction analysis of ZnO:Al thin films, Appl. Surf. Sci., 259, 590, 10.1016/j.apsusc.2012.07.081

König, 2001, Microstructure of polycrystalline Ti and its microelectrochemical properties by means of lectron-backscattering diffraction (EBSD), Electrochim. Acta, 47, 149, 10.1016/S0013-4686(01)00572-2

Germann, 2008, Strain fields in histological slices of brain tissue determined by synchrotron radiation-based micro computed tomography, J. Neurosci. Methods, 170, 149, 10.1016/j.jneumeth.2008.01.011

Louvis, 2011, Selective laser melting of aluminium components, J. Mater. Process. Technol., 211, 275, 10.1016/j.jmatprotec.2010.09.019

Li, 2009, Effects of processing parameters on the temperature field of selective laser melting metal powder, Powder Metall. Met. Ceram., 48, 186, 10.1007/s11106-009-9113-z

Furumoto, 2009, Study on laser consolidation of metal powder with Yb:fiber laser–temperature measurement of laser irradiation area, JLMN, 4, 22, 10.2961/jlmn.2009.01.0005

Yadroitsev, 2010, Single track formation in selective laser melting of metal powders, J. Mater. Process. Technol., 210, 1624, 10.1016/j.jmatprotec.2010.05.010

DebRoy, 1995, Physical processes in fusion welding, Rev. Mod. Phys., 67, 85, 10.1103/RevModPhys.67.85

Antonysamy, 2013, Effect of build geometry on the beta-grain structure and texture in additive manufacture of Ti6Al4V by selective electron beam melting, Mater. Charact., 84, 153, 10.1016/j.matchar.2013.07.012

Thijs, 2013, Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder, Acta Mater., 61, 1809, 10.1016/j.actamat.2012.11.052

Glicksman, 2011

Kompatscher, 2001

Burlakov, 2011, Ostwald ripening of binary alloy particles, J. Chem. Phys., 134, 024521, 10.1063/1.3530287

Garay-Reyes, 2013, Study of phase decomposition and coarsening of γ′ precipitates in Ni–12at.% Ti alloy, Mater. Charact., 83, 35, 10.1016/j.matchar.2013.05.017

Lifshitz, 1961, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids, 19, 35, 10.1016/0022-3697(61)90054-3

Wagner, 1961, Theorie der Alterung von Nierderschlägen durch Umlösen, Z. Elektrochem., 65, 581

Eberl, 1998, Deducing growth mechanisms for minerals from the shapes of crystal size distribution, Am. J. Sci., 298, 499, 10.2475/ajs.298.6.499

Kile, 2000, An assessment of calcite crystal growth mechanisms based on crystal size distributions, Geochim. Cosmochim. Acta, 64, 2937, 10.1016/S0016-7037(00)00394-X