Microstructure of interfaces in heterosystems

Pleiades Publishing Ltd - Tập 8 - Trang 317-327 - 2013
A. L. Vasiliev1,2, V. V. Roddatis1, M. Yu. Presnyakov1, A. S. Orekhov1,2, S. Lopatin3, V. I. Bondarenko1, M. V. Koval’chuk1,2
1National Research Center Kurchatov Institute, Moscow, Russia
2Federal State Budget Enterprise of Science, Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russia
3FEI Electron Optics, Endhoven, The Netherlands

Tóm tắt

The results of investigations into interfaces and thin films in heterostructures with the use of spherical-aberration-corrected transmission and scanning transmission electron microscopy (STEM) by applying supersensitive energy-dispersion X-ray microanalysis are presented. Using examples of heterostructures of various materials (Si/Ge, InGaAs/InAs, AlN/GaN, YBCO on various substrates and LuFe(Co)O3/YSZ), the possibility of determining the morphology and atomic structure of interfaces and mechanisms of the formation of layers is shown.

Tài liệu tham khảo

H. H. Rose, “Correction of aberrations—past, present and future,” Microsc. Microanal. 8(Suppl. 2), 6–7 (2002). Z. L. Wang and J. M. Cowley, “Simulating high-angle annular dark field (ADF) STEM images including inelastic thermal diffuse scattering,” Ultramicroscopy 31, 437–454 (1989). M. N. Filippov, V. P. Gavrilenko, M. V. Kovalchuk, V. B. Mityukhlyaev, Yu. V. Ozerin, A. V. Rakov, V. V. Roddatis, P. A. Todua, and A. L. Vasiliev, “Reference material for transmission electron microscope calibration,” Meas. Sci. Technol. 22, 094014 1-5 (2011). R. Brydson, Electron Energy Loss Spectroscopy (Taylor&Fransis, New York, 2001). Yu. B. Bolkhovityanov, O. P. Pchelyakov, and S. I. Chikichev, “Si-Ge epitaxial films: physical foundations for synthesizing stressed and completely relaxed heterostrucutres,” Usp. Fiz. Nauk 171, 689–715 (2001). D. D. Perovic and D. C. Houghton, “The introduction of dislocations in low misfit epitaxial systems,” Inst. Phys. Conf. Ser. 146, 117–121 (1995). D. J. Paul, “Si/SiGe heterostructures: from material and physics to devices and circuits,” Semicond. Sci. Technol. 19, 75 (2004). H. H. Cheng, C. T. Chia, V. A. Markov, X. J. Guo, C. C. Chen, Y. H. Peng, and C. H. Kuan, “A novel structure in Ge/Si epilayers grown at low temperature,” Thin Solid Films 369(1–2), 182–184 (2000). Y. L. Soo, G. Kioseoglou, S. Huang, S. Kim, Y. H. Kao, Y. H. Peng, C. H. Kuan, and H. H. Cheng, “’Inverted hut’ structure of Si-Ge nanocrystals studied by extended X-ray absorbtion fine structure method,” Appl. Phys. Lett. 78(23), 3684–3686 (2000). H. H. Cheng, W. P. Huang, V. I. Mashanov, and G. Sun, “Local intermixing on Ge/Si hetrostructures at low temperature growth,” J. Appl. Phys. 108, 044314 1-5 (2010). T. M. Burbaev, V. A. Kurbatov, M. M. Rzaev, A. O. Pogosov, N. N. Sibel’din, V. A. Tsvetkov, H. Lichtenberger, F. Schäffler, J. P. Leitao, N. A. Sobolev, and M. C. Carmo, “Morphological transformation of a germanium layer grown on a silicon surface by molecular-beam epitaxy at low temperatures,” Phys. Solid State 47(1), 71–75 (2005). G. Bauer and F. Schäffler, “Self-assembled Si and SiGe nanostructures: New growth concepts and structural analysis,” Phys. Stat. Sol. A 203(14), 3496–3505 (2006). Y. Yamashita, A. Endoh, K. Shinohara, K. Hikosaka, T. Matsui, S. Hiyamizu, and T. Mimura, “Pseudomorphic In0.52Al0.48As/In0.7Ga0.3As HEMTs with an ultrahigh fT of 562 GHz,” IEEE Electron. Dev. Lett. 23(10), 573–575 (2002). X. Wallart, B. Pinsard, and F. Mollot, “High-mobility InGaAs/InAlAs pseudomorphic heterostructures on InP (001),” J. Appl. Phys. 97, 053706 1-6 (2005). J. C. Huang, W. C. Hsu, C. S. Lee, Y. J. Chen, and D. H. Huang, “Characteristics of δ-doped InAlAs/InGaAs/InP high electron mobility transistors with a linearly graded InxGa1 − x As channel,” Semicond. Sci. Technol. 21, 619–625 (2006). D. Xu, S. A. Kraus, M. Sexl, G. Bohm, G. Trankle, G. Weimann, and G. Abstreiter, “Design and fabrication of double modulation doped InAlAs/lnGaAs/InAs heterojunction FETs for high-speed and millimeterwave applications,” IEEE Trans. Electron. Dev. 45, 21–30 (1998). T. Akazaki, T. Enoki, K. Arai, Y. Umeda, and Y. Ishii, “High-frequency performance for sub-0.1 fum gate InAs-inserted-channel InAlAs/InGaAs HEMT,” IEEE Electron. Dev. Lett. 28(13), 1230–1231 (1992). N. Maeda, H. Ito, T. Enoki, and Y. Ishii, “Dependence on channel potential structures of I-V characteristics in InAlAs/InGaAs pseudomorphic high electron mobility transitors,” Appl. Phys. 81(3), 1552–1565 (1997). M. Sexl, G. Bohm, D. Xu, H. Hei G. Tränkle, and G. Weimann, “MBE growth of double-sided doped InAlAs InGaAs HEMTs with an InAs layer inserted in the channel,” J. Cryst. Growth 175–176, 915–918 (1997). A. L. Vasil’ev, I. S. Vasil’evskii, G. B. Galiev, V. P. Gladkov, R. M. Imamov, E. A. Klimov, M. V. Koval’chuk, D. S. Ponomarev, V. V. Roddatis, and I. A. Subbotin, “Structural and electrophysical properties of quantum wells with nanosized InAs inserts in InyAl1−y As/InxGa1−x As heterostructures on InP surfaces,” Kristallogr. 56(2), 324–336 (2011). H. Markoc, Nitride Semiconductors and Devices (Springer, Berlin, 1999). B. A. Danilchenko, S. E. Zelensky, E. Drok, S. A. Vitusevich, S. V. Danylyuk, N. Klein, H. Luth, A. E. Belyaev, and V. A. Kochelap, “Hot-electron transport in AlGaN/GaN two-dimensional conducting channels,” Appl. Phys. Lett. 85, 5421–5423 (2004). A. F. Wright and J. S. Nelson, “Consistent structural properties of AlN, GaN and InN,” Phys. Rev. Ser. Condens. Matter 51, 7866–7869 (1995). W. Paszkowicz, R. Minikayev, and S. Podsiadlo, “Rietveld-refinement study of aluminium and gallium nitrides,” J. Alloys Comp. 382, 100–106 (2004). A. Taylor and D. S. Laidler, “The formation and crystal structure of silicon carbide,” Brit. J. Appl. Phys. 1, 174–181 (1950). D. B. Williams and C. B. Carter, Transmission Electron Microscopy. A Textbook for Materials Science, 2nd ed. (Springer, New York, 2009). G. Radtke, P. Bayle-Guillemaud, and J. Thibault, “EELS study of near edge fine structure in AlxGa1 − x N alloys,” Electron. Microscop. Anal. Inst. Phys. Conf. Ser., No. 179, 303–306 (2003). Thin Bearing Bands of the Secondary Generation Based on High-Temperature Superconductors, Ed. by A. R. Kaul (LKI, Moscow, 2009) [in Russian]. A. R. Akbashev and A. R. Kaul, “Structural and chemical aspects of the design of multiferroic materials,” Russ. Chem. Rev. 80(12), 1159–1177 (2011). A. R. Akbashev, V. V. Roddatis, A. L. Vasiliev, S. Lopatin, A. S. Semisalova, N. S. Perov, V. A. Amelichev, and A. R. Kaul, “Reconstructed stacking faults in cobaltdoped hexagonal LuFeO3 revealed by mapping of caution distribution at atomic scale,” Cryst. Eng. Comm. 14, 5373–5376 (2012).