Microstructure, mechanical and electrical characterizations of bimodal and nanocellular polypropylene/graphene nanoplatelet composite foams
Tài liệu tham khảo
Kumar Singh, 2018, A review of porous lightweight composite materials for electromagnetic interference shielding, Compos. B Eng., 149, 188, 10.1016/j.compositesb.2018.05.027
Cui, 2018, Rational construction of a 3D hierarchical NiCo 2 O 4/PANI/MF composite foam as a high-performance electrode for asymmetric supercapacitors, Chem Commun, 54, 4160, 10.1039/C7CC09821A
Owuor, 2018, New paradigm in advanced composite and nanocomposite design, J. Reinf. Plast. Compos., 62, 263, 10.1016/j.repl.2017.07.005
Sorrentino, 2014, Cellular thermoplastic fibre reinforced composite (CellFRC): a new class of lightweight material with high impact properties, Compos. Part A Appl. Sci. Manuf., 64, 223, 10.1016/j.compositesa.2014.05.016
Wu, 2019, Effects of process parameters on core-back foam injection molding process, Express Polym. Lett., 13, 390, 10.3144/expresspolymlett.2019.32
Wu, 2019, A kind of special weld lines with high specific strength and elongation obtained by core-back chemical foam injection molding, Express Polym. Lett., 13, 1041, 10.3144/expresspolymlett.2019.91
Owuor, 2017, High toughness in ultralow density graphene oxide foam, Adv. Mater. Interfaces, 4, 10.1002/admi.201700030
Owuor, 2017, Lightweight hexagonal boron nitride foam for CO2 absorption, ACS Nano, 11, 8944, 10.1021/acsnano.7b03291
Yokoyama, 2005, Nanocellular structures in block copolymers with CO2-philic blocks using CO2 as a blowing agent: crossover from Micro- to nanocellular structures with depressurization temperature, Macromolecules, 38, 10516, 10.1021/ma051757j
Ghariniyat, 2018, Development of thermally conductive thermoplastic polyurethane composite foams via CO2 foaming-assisted filler networking, Compos. B Eng., 143, 9, 10.1016/j.compositesb.2018.02.008
Sauceau, 2011, New challenges in polymer foaming: a review of extrusion processes assisted by supercritical carbon dioxide, Prog. Polym. Sci., 36, 749, 10.1016/j.progpolymsci.2010.12.004
Ajorloo, 2020, One-step regulating the microstructure in physical foaming process of polypropylene, Mater. Manuf. Process., 10.1080/10426914.2020.1747626
Arora, 1998, Preparation and characterization of microcellular polystyrene foams processed in supercritical carbon dioxide, Macromolecules, 31, 4614, 10.1021/ma971811z
Trageser, 1977, Crosslinked polyethylene foam processes, Radiat. Phys. Chem., 9, 261
Wang, 2018, Ultra-low threshold and lightweight biodegradable porous PLA/MWCNT with segregated conductive networks for high-performance thermal insulation and electromagnetic interference shielding applications, ACS Appl. Mater. Interfaces, 10, 1195, 10.1021/acsami.7b14111
Mitsunaga, 2003, Intercalated polycarbonate/clay nanocomposites: nanostructure control and foam processing, Macromol. Mater. Eng., 288, 543, 10.1002/mame.200300097
Zhou, 2019, Synthesis and compressive behaviors of PMMA microporous foam with multi-layer cell structure, Compos. B Eng., 165, 272, 10.1016/j.compositesb.2018.11.118
Zhao, 2017, Flexible, Ultrathin, and High-Efficiency Electromagnetic Shielding Properties of Poly(Vinylidene Fluoride)/Carbon Composite Films, ACS Appl. Mater. Interfaces, 9, 20873, 10.1021/acsami.7b04935
Yousefzade, 2015, Assisted heterogeneous multinucleation and bubble growth in semicrystalline ethylene-vinyl acetate copolymer/expanded graphite nanocomposite foams: control of morphology and viscoelastic properties, Express Polym. Lett., 9, 932, 10.3144/expresspolymlett.2015.84
Wang, 2017, Unprecedented development of ultrahigh expansion injection-molded polypropylene foams by introducing hydrophobic-modified cellulose nanofibers, ACS Appl. Mater. Interfaces, 9, 9250, 10.1021/acsami.7b01329
Owuor, 2017, Self‐stiffening behavior of reinforced carbon nanotubes spheres, Adv. Eng. Mater., 19, 10.1002/adem.201600756
Owuor, 2017, Enhancing mechanical properties of nanocomposites using interconnected carbon nanotubes (iCNT) as reinforcement, Adv. Eng. Mater., 19, 10.1002/adem.201600499
Yang, 2005, Novel carbon nanotube− polystyrene foam composites for electromagnetic interference shielding, Nano Lett., 5, 2131, 10.1021/nl051375r
Yang, 2005, Conductive carbon nanofiber–polymer foam structures, Adv. Mater., 17, 1999, 10.1002/adma.200500615
Zheng, 2010, Use of nanoparticles for improving the foaming behaviors of linear PP, J. Appl. Polym. Sci., 117, 2972
Chen, 2012, Controlling bubble density in MWNT/polymer nanocomposite foams by MWNT surface modification, Compost. Sci. Technol, 72, 190, 10.1016/j.compscitech.2011.11.001
Zhi, 2018, Simultaneous enhancements in electrical conductivity and toughness of selectively foamed polycarbonate/polystyrene/carbon nanotube microcellular foams, Compos. B Eng., 143, 161, 10.1016/j.compositesb.2018.01.022
Ameli, 2017, Process-microstructure-electrical conductivity relationships in injection-molded polypropylene/carbon nanotube nanocomposite foams, Compost. A Appl. Sci. Manuf., 96, 28, 10.1016/j.compositesa.2017.02.012
Antunes, 2011, Broad-band electrical conductivity of carbon nanofibre-reinforced polypropylene foams, Carbon, 49, 708, 10.1016/j.carbon.2010.10.032
Cai, 2007, Interfacial effects in nano-silica/polypropylene composites fabricated by in-situ chemical blowing, Express Polym. Lett., 1, 2, 10.3144/expresspolymlett.2007.2
Shi, 2006, Flame retardancy of different‐sized expandable graphite particles for high‐density rigid polyurethane foams, Polym. Int., 55, 862, 10.1002/pi.2021
Kim, 2018, Synthesis of nanoparticle-enhanced polyurethane foams and evaluation of mechanical characteristics, Compos. B Eng., 136, 28, 10.1016/j.compositesb.2017.10.025
Hamidinejad, 2018, Enhanced thermal conductivity of graphene nanoplatelet-polymer nanocomposites fabricated via supercritical fluid assisted in-situ exfoliation, ACS Appl. Mater. Interfaces, 10, 1225, 10.1021/acsami.7b15170
Hamidinejad, 2018, Ultralight microcellular polymer-graphene nanoplatelet foams with enhanced dielectric performance, ACS Appl. Mater. Interfaces, 10, 19987, 10.1021/acsami.8b03777
Zhao, 2019, A versatile foaming platform to fabricate polymer/carbon composites with high dielectric permittivity and ultra-low dielectric loss, J. Mater. Chem. A Mater. Energy Sustain., 7, 133, 10.1039/C8TA05556D
Zhao, 2018, Incorporating a microcellular structure into PVDF/graphene–nanoplatelet composites to tune their electrical conductivity and electromagnetic interference shielding properties, J. Mater. Chem. C Mater. Opt. Electron. Devices, 6, 10292, 10.1039/C8TC03714K
Zhang, 2012, Extruded polystyrene foams with bimodal cell morphology, Polymer, 53, 2435, 10.1016/j.polymer.2012.04.006
Ma, 2014, Fabrication of microcellular polycarbonate foams with unimodal or bimodal cell-size distributions using supercritical carbon dioxide as a blowing agent, J. Cell Plas., 50, 55, 10.1177/0021955X13503849
Arora, 1998, Preparation and characterization of microcellular polystyrene foams processed in supercritical carbon dioxide, Macromolecules, 31, 4614, 10.1021/ma971811z
Salerno, 2009, Engineered μ-bimodal poly (ε-caprolactone) porous scaffold for enhanced hMSC colonization and proliferation, Acta Biomater., 5, 1082, 10.1016/j.actbio.2008.10.012
Fasihi, 2013, Preparation of highly dispersed expanded graphite/polypropylene nanocomposites via low temperature processing, J. Appl. Polym. Sci., 130, 1834, 10.1002/app.39222
Wang, 2016, Fabrication of high expansion microcellular injection-molded polypropylene foams by adding long-chain branches, Ind. Eng. Chem. Res., 55, 11970, 10.1021/acs.iecr.6b03641
Tian, 2007, Crystallization behaviors of linear and long chain branched polypropylene, J. Appl. Polym. Sci., 104, 3592, 10.1002/app.26024
Fasihi, 2015, A comparative study on thermomechanical and rheological characteristics of graphite/polypropylene nanocomposites: highlighting the role of mixing, J. Vinyl. Addit. Technol., 21, 12, 10.1002/vnl.21357
Ajorloo, 2019, How are the thermal properties of polypropylene/graphene nanoplatelet composites affected by polymer chain configuration and size of nanofiller?, Mater. Des., 181, 10.1016/j.matdes.2019.108068
Heidari, 2019, Cell structure-impact property relationship of polypropylene/thermoplastic elastomer blend foams, Express Polym. Lett., 13, 429, 10.3144/expresspolymlett.2019.36
Wati Binti Sharudin, 2011, CO2-induced mechanical reinforcement of polyolefin‐based nanocellular foams, Macromol. Mater. Eng., 296, 1046, 10.1002/mame.201100085
Doroudiani, 2003, Polystyrene foams. III. Structure–tensile properties relationships, J. Appl. Polym. Sci., 90, 1427, 10.1002/app.12806
Yousefian, 2015, Nano‐crystalline cellulose, chemical blowing agent, and mold temperature effect on morphological, physical/mechanical properties of polypropylene, J. Appl. Polym. Sci., 132, 47, 10.1002/app.42845
Bledzki, 2002, Microcellular wood fibre reinforced polypropylene composites in an injection moulding process, Cell Polym., 21, 417, 10.1177/026248930202100601
Bledzki, 2006, Injection moulded microcellular wood fibre–polypropylene composites, Compost. A Appl. Sci. Manuf., 37, 1358, 10.1016/j.compositesa.2005.08.010
Bao, 2016, Tensile and impact properties of microcellular isotactic polypropylene (PP) foams obtained by supercritical carbon dioxide, J. Supercrit. Fluids, 111, 63, 10.1016/j.supflu.2016.01.016