Microstructure, mechanical and electrical characterizations of bimodal and nanocellular polypropylene/graphene nanoplatelet composite foams

Materials Today Communications - Tập 25 - Trang 101447 - 2020
Vahabodin Goodarzi1, Mohammad Fasihi2, Hamid Garmabi3, Masahiro Ohshima4, Kentaro Taki5, Mohammad Reza Saeb6
1Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 19945-546, Tehran, Iran
2School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
3Department of Polymer Engineering and Color Technology, AmirKabir University of Technology, Tehran, Iran
4Department of Chemical Engineering, Kyoto University, Kyoto, Japan
5Faculty of Mechanical Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan
6Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran

Tài liệu tham khảo

Kumar Singh, 2018, A review of porous lightweight composite materials for electromagnetic interference shielding, Compos. B Eng., 149, 188, 10.1016/j.compositesb.2018.05.027 Cui, 2018, Rational construction of a 3D hierarchical NiCo 2 O 4/PANI/MF composite foam as a high-performance electrode for asymmetric supercapacitors, Chem Commun, 54, 4160, 10.1039/C7CC09821A Owuor, 2018, New paradigm in advanced composite and nanocomposite design, J. Reinf. Plast. Compos., 62, 263, 10.1016/j.repl.2017.07.005 Sorrentino, 2014, Cellular thermoplastic fibre reinforced composite (CellFRC): a new class of lightweight material with high impact properties, Compos. Part A Appl. Sci. Manuf., 64, 223, 10.1016/j.compositesa.2014.05.016 Wu, 2019, Effects of process parameters on core-back foam injection molding process, Express Polym. Lett., 13, 390, 10.3144/expresspolymlett.2019.32 Wu, 2019, A kind of special weld lines with high specific strength and elongation obtained by core-back chemical foam injection molding, Express Polym. Lett., 13, 1041, 10.3144/expresspolymlett.2019.91 Owuor, 2017, High toughness in ultralow density graphene oxide foam, Adv. Mater. Interfaces, 4, 10.1002/admi.201700030 Owuor, 2017, Lightweight hexagonal boron nitride foam for CO2 absorption, ACS Nano, 11, 8944, 10.1021/acsnano.7b03291 Yokoyama, 2005, Nanocellular structures in block copolymers with CO2-philic blocks using CO2 as a blowing agent: crossover from Micro- to nanocellular structures with depressurization temperature, Macromolecules, 38, 10516, 10.1021/ma051757j Ghariniyat, 2018, Development of thermally conductive thermoplastic polyurethane composite foams via CO2 foaming-assisted filler networking, Compos. B Eng., 143, 9, 10.1016/j.compositesb.2018.02.008 Sauceau, 2011, New challenges in polymer foaming: a review of extrusion processes assisted by supercritical carbon dioxide, Prog. Polym. Sci., 36, 749, 10.1016/j.progpolymsci.2010.12.004 Ajorloo, 2020, One-step regulating the microstructure in physical foaming process of polypropylene, Mater. Manuf. Process., 10.1080/10426914.2020.1747626 Arora, 1998, Preparation and characterization of microcellular polystyrene foams processed in supercritical carbon dioxide, Macromolecules, 31, 4614, 10.1021/ma971811z Trageser, 1977, Crosslinked polyethylene foam processes, Radiat. Phys. Chem., 9, 261 Wang, 2018, Ultra-low threshold and lightweight biodegradable porous PLA/MWCNT with segregated conductive networks for high-performance thermal insulation and electromagnetic interference shielding applications, ACS Appl. Mater. Interfaces, 10, 1195, 10.1021/acsami.7b14111 Mitsunaga, 2003, Intercalated polycarbonate/clay nanocomposites: nanostructure control and foam processing, Macromol. Mater. Eng., 288, 543, 10.1002/mame.200300097 Zhou, 2019, Synthesis and compressive behaviors of PMMA microporous foam with multi-layer cell structure, Compos. B Eng., 165, 272, 10.1016/j.compositesb.2018.11.118 Zhao, 2017, Flexible, Ultrathin, and High-Efficiency Electromagnetic Shielding Properties of Poly(Vinylidene Fluoride)/Carbon Composite Films, ACS Appl. Mater. Interfaces, 9, 20873, 10.1021/acsami.7b04935 Yousefzade, 2015, Assisted heterogeneous multinucleation and bubble growth in semicrystalline ethylene-vinyl acetate copolymer/expanded graphite nanocomposite foams: control of morphology and viscoelastic properties, Express Polym. Lett., 9, 932, 10.3144/expresspolymlett.2015.84 Wang, 2017, Unprecedented development of ultrahigh expansion injection-molded polypropylene foams by introducing hydrophobic-modified cellulose nanofibers, ACS Appl. Mater. Interfaces, 9, 9250, 10.1021/acsami.7b01329 Owuor, 2017, Self‐stiffening behavior of reinforced carbon nanotubes spheres, Adv. Eng. Mater., 19, 10.1002/adem.201600756 Owuor, 2017, Enhancing mechanical properties of nanocomposites using interconnected carbon nanotubes (iCNT) as reinforcement, Adv. Eng. Mater., 19, 10.1002/adem.201600499 Yang, 2005, Novel carbon nanotube− polystyrene foam composites for electromagnetic interference shielding, Nano Lett., 5, 2131, 10.1021/nl051375r Yang, 2005, Conductive carbon nanofiber–polymer foam structures, Adv. Mater., 17, 1999, 10.1002/adma.200500615 Zheng, 2010, Use of nanoparticles for improving the foaming behaviors of linear PP, J. Appl. Polym. Sci., 117, 2972 Chen, 2012, Controlling bubble density in MWNT/polymer nanocomposite foams by MWNT surface modification, Compost. Sci. Technol, 72, 190, 10.1016/j.compscitech.2011.11.001 Zhi, 2018, Simultaneous enhancements in electrical conductivity and toughness of selectively foamed polycarbonate/polystyrene/carbon nanotube microcellular foams, Compos. B Eng., 143, 161, 10.1016/j.compositesb.2018.01.022 Ameli, 2017, Process-microstructure-electrical conductivity relationships in injection-molded polypropylene/carbon nanotube nanocomposite foams, Compost. A Appl. Sci. Manuf., 96, 28, 10.1016/j.compositesa.2017.02.012 Antunes, 2011, Broad-band electrical conductivity of carbon nanofibre-reinforced polypropylene foams, Carbon, 49, 708, 10.1016/j.carbon.2010.10.032 Cai, 2007, Interfacial effects in nano-silica/polypropylene composites fabricated by in-situ chemical blowing, Express Polym. Lett., 1, 2, 10.3144/expresspolymlett.2007.2 Shi, 2006, Flame retardancy of different‐sized expandable graphite particles for high‐density rigid polyurethane foams, Polym. Int., 55, 862, 10.1002/pi.2021 Kim, 2018, Synthesis of nanoparticle-enhanced polyurethane foams and evaluation of mechanical characteristics, Compos. B Eng., 136, 28, 10.1016/j.compositesb.2017.10.025 Hamidinejad, 2018, Enhanced thermal conductivity of graphene nanoplatelet-polymer nanocomposites fabricated via supercritical fluid assisted in-situ exfoliation, ACS Appl. Mater. Interfaces, 10, 1225, 10.1021/acsami.7b15170 Hamidinejad, 2018, Ultralight microcellular polymer-graphene nanoplatelet foams with enhanced dielectric performance, ACS Appl. Mater. Interfaces, 10, 19987, 10.1021/acsami.8b03777 Zhao, 2019, A versatile foaming platform to fabricate polymer/carbon composites with high dielectric permittivity and ultra-low dielectric loss, J. Mater. Chem. A Mater. Energy Sustain., 7, 133, 10.1039/C8TA05556D Zhao, 2018, Incorporating a microcellular structure into PVDF/graphene–nanoplatelet composites to tune their electrical conductivity and electromagnetic interference shielding properties, J. Mater. Chem. C Mater. Opt. Electron. Devices, 6, 10292, 10.1039/C8TC03714K Zhang, 2012, Extruded polystyrene foams with bimodal cell morphology, Polymer, 53, 2435, 10.1016/j.polymer.2012.04.006 Ma, 2014, Fabrication of microcellular polycarbonate foams with unimodal or bimodal cell-size distributions using supercritical carbon dioxide as a blowing agent, J. Cell Plas., 50, 55, 10.1177/0021955X13503849 Arora, 1998, Preparation and characterization of microcellular polystyrene foams processed in supercritical carbon dioxide, Macromolecules, 31, 4614, 10.1021/ma971811z Salerno, 2009, Engineered μ-bimodal poly (ε-caprolactone) porous scaffold for enhanced hMSC colonization and proliferation, Acta Biomater., 5, 1082, 10.1016/j.actbio.2008.10.012 Fasihi, 2013, Preparation of highly dispersed expanded graphite/polypropylene nanocomposites via low temperature processing, J. Appl. Polym. Sci., 130, 1834, 10.1002/app.39222 Wang, 2016, Fabrication of high expansion microcellular injection-molded polypropylene foams by adding long-chain branches, Ind. Eng. Chem. Res., 55, 11970, 10.1021/acs.iecr.6b03641 Tian, 2007, Crystallization behaviors of linear and long chain branched polypropylene, J. Appl. Polym. Sci., 104, 3592, 10.1002/app.26024 Fasihi, 2015, A comparative study on thermomechanical and rheological characteristics of graphite/polypropylene nanocomposites: highlighting the role of mixing, J. Vinyl. Addit. Technol., 21, 12, 10.1002/vnl.21357 Ajorloo, 2019, How are the thermal properties of polypropylene/graphene nanoplatelet composites affected by polymer chain configuration and size of nanofiller?, Mater. Des., 181, 10.1016/j.matdes.2019.108068 Heidari, 2019, Cell structure-impact property relationship of polypropylene/thermoplastic elastomer blend foams, Express Polym. Lett., 13, 429, 10.3144/expresspolymlett.2019.36 Wati Binti Sharudin, 2011, CO2-induced mechanical reinforcement of polyolefin‐based nanocellular foams, Macromol. Mater. Eng., 296, 1046, 10.1002/mame.201100085 Doroudiani, 2003, Polystyrene foams. III. Structure–tensile properties relationships, J. Appl. Polym. Sci., 90, 1427, 10.1002/app.12806 Yousefian, 2015, Nano‐crystalline cellulose, chemical blowing agent, and mold temperature effect on morphological, physical/mechanical properties of polypropylene, J. Appl. Polym. Sci., 132, 47, 10.1002/app.42845 Bledzki, 2002, Microcellular wood fibre reinforced polypropylene composites in an injection moulding process, Cell Polym., 21, 417, 10.1177/026248930202100601 Bledzki, 2006, Injection moulded microcellular wood fibre–polypropylene composites, Compost. A Appl. Sci. Manuf., 37, 1358, 10.1016/j.compositesa.2005.08.010 Bao, 2016, Tensile and impact properties of microcellular isotactic polypropylene (PP) foams obtained by supercritical carbon dioxide, J. Supercrit. Fluids, 111, 63, 10.1016/j.supflu.2016.01.016