Microstructure evolution of Inconel 738 fabricated by pulsed laser powder bed fusion

Progress in Additive Manufacturing - Tập 4 Số 2 - Trang 97-107 - 2019
José Alberto Muñiz-Lerma1, Yuan Tian1, Xianglong Wang1, Raynald Gauvin1, Mathieu Brochu1
1Department of Mining and Materials Engineering, McGill University, Montreal, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Trosch T, Strößner J, Völkl R, Glatzel U (2016) Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting. Mater Lett 164:428–431. https://doi.org/10.1016/j.matlet.2015.10.136

Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, Wang CCL, Shin YC, Zhang S, Zavattieri PD (2015) The status, challenges, and future of additive manufacturing in engineering. Comput Aided Des 69:65–89. https://doi.org/10.1016/j.cad.2015.04.001

Lippold JC, Kiser SD, DuPont JN (2011) Welding metallurgy and weldability of nickel-base alloys. Wiley, New York

Balikci E, Raman A, Mirshams R (2000) Tensile strengthening in the nickel-base superalloy IN738LC. J Mater Eng Perform 9(3):324–329

Hays C (2008) Size and shape effects for gamma prime in alloy 738. J Mater Eng Perform 17(2):254–259. https://doi.org/10.1007/s11665-007-9135-y

Ojo OA, Chaturvedi MC (2005) On the role of liquated γ′ precipitates in weld heat affected zone microfissuring of a nickel-based superalloy. Mater Sci Eng A 403(1):77–86. https://doi.org/10.1016/j.msea.2005.04.034

Ojo O, Richards N, Chaturvedi M (2004) On incipient melting during high temperature heat treatment of cast Inconel 738 superalloy. J Mater Sci 39(24):7401–7404

Ojo O, Richards N, Chaturvedi M (2006) Study of the fusion zone and heat-affected zone microstructures in tungsten inert gas-welded INCONEL 738LC superalloy. Metall Mater Trans A 37(2):421–433

Ojo OA, Chaturvedi MC (2007) Liquation microfissuring in the weld heat-affected zone of an overaged precipitation-hardened nickel-base superalloy. Metall Mater Trans A 38(2):356–369. https://doi.org/10.1007/s11661-006-9025-1

Ojo OA, Richards NL, Chaturvedi MC (2004) Liquid film migration of constitutionally liquated γ′ in weld heat affected zone (HAZ) of Inconel 738LC superalloy. Scripta Mater 51(2):141–146. https://doi.org/10.1016/j.scriptamat.2004.03.040

Cloots M, Uggowitzer PJ, Wegener K (2016) Investigations on the microstructure and crack formation of IN738LC samples processed by selective laser melting using Gaussian and doughnut profiles. Mater Des 89:770–784. https://doi.org/10.1016/j.matdes.2015.10.027

Engeli R, Etter T, Hoevel S, Wegener K (2016) Processability of different IN738LC powder batches by selective laser melting. J Mater Process Technol 229:484–491

Rickenbacher L, Etter T, Hövel S, Wegener K (2013) High temperature material properties of IN738LC processed by selective laser melting (SLM) technology. Rapid Prototyp J 19(4):282–290

Risse J, Golebiewski C, Meiners W, Wissenbach K (2013) Einfluss der Prozessführung auf die Rissbildung in mittels SLM hergestellten Bauteilen aus der Nickelbasislegierung IN738LC. In: Proceedings of the RapidTech 2013. Presented at the RapidTech 2013—Trade Fair and User’s Conference for Rapid Technology

Cloots M (2017) Empirische und simulative studie über die Verarbeitbarkeit von IN738LC mittels SLM. ETH Zurich, Zurich

Geddes B, Leon H, Huang X (2010) Superalloys: alloying and performance. ASM International, Russell

INCO Technical Data on Alloy IN-738 (1981) The International Nickel Company, New York

Chou R, Milligan J, Paliwal M, Brochu M (2015) Additive manufacturing of Al-12Si alloy via pulsed selective laser melting. JOM 67(3):590–596. https://doi.org/10.1007/s11837-014-1272-9

Chou R, Ghosh A, Chou S, Paliwal M, Brochu M (2017) Microstructure and mechanical properties of Al10SiMg fabricated by pulsed laser powder bed fusion. Mater Sci Eng A 689:53–62

Tian Y, Muñiz Lerma JA, Brochu M (2017) Nickel-based superalloy microstructure obtained by pulsed laser powder bed fusion. Mater Charact 131:306–315. https://doi.org/10.1016/j.matchar.2017.07.024

Chou SC, Trask M, Danovitch J, Wang XL, Choi JP, Brochu M (2018) Pulsed laser powder bed fusion additive manufacturing of A356. Mater Charact. https://doi.org/10.1016/j.matchar.2018.02.004

Gontcharov A, Liburdi J, Lowden P, Nagy D, Patel N (2014) Self healing fusion welding technology. (45752):V006T022A013. https://doi.org/10.1115/GT2014-26412

Tian Y, Gauvin R, Brochu M (2016) Microstructure evolution and rapid solidification behavior of blended nickel-based superalloy powders fabricated by laser powder deposition. Metall Mater Trans A 47(7):3771–3780. https://doi.org/10.1007/s11661-016-3505-8

Tian Y, Gontcharov A, Gauvin R, Lowden P, Brochu M (2016) Effect of heat treatments on microstructure evolution and mechanical properties of blended nickel-based superalloys powders fabricated by laser powder deposition. Mater Sci Eng A 674:646–657. https://doi.org/10.1016/j.msea.2016.07.116

Tian Y, Gontcharov A, Gauvin R, Lowden P, Brochu M (2017) Effect of heat treatment on microstructure evolution and mechanical properties of Inconel 625 with 0.4 wt% boron modification fabricated by gas tungsten arc deposition. Mater Sci Eng A 684:275–283. https://doi.org/10.1016/j.msea.2016.12.038

Tian Y, Ouyang B, Gontcharov A, Gauvin R, Lowden P, Brochu M (2017) Microstructure evolution of Inconel 625 with 0.4 wt% boron modification during gas tungsten arc deposition. J Alloys Compd 694:429–438. https://doi.org/10.1016/j.jallcom.2016.10.019

Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

Darvish K, Chen ZW, Phan MAL, Pasang T (2018) Selective laser melting of Co-29Cr-6Mo alloy with laser power 180–360W: cellular growth, intercellular spacing and the related thermal condition. Mater Charact 135:183–191. https://doi.org/10.1016/j.matchar.2017.11.042

Li S, Wei Q, Shi Y, Zhu Z, Zhang D (2015) Microstructure characteristics of Inconel 625 superalloy manufactured by selective laser melting. J Mater Sci Technol 31(9):946–952. https://doi.org/10.1016/j.jmst.2014.09.020

Tian Y, McAllister D, Colijn H, Mills M, Farson D, Nordin M, Babu S (2014) Rationalization of microstructure heterogeneity in INCONEL 718 builds made by the direct laser additive manufacturing process. Metall Mater Trans A 45(10):4470–4483. https://doi.org/10.1007/s11661-014-2370-6

Baker JC, Gahn JW (1969) Solute trapping by rapid solidification. Acta Metall 17(5):575–578. https://doi.org/10.1016/0001-6160(69)90116-3

Tables of Physical and Chemical Constants (2018) 4.2.1 X-ray absorption edges, characteristic X-ray lines and fluorescence yields. Kaye & Laby Online. Version 1.1. http://www.kayelaby.npl.co.uk . Accessed 4 June 2018

Smith PM, Aziz MJ (1994) Solute trapping in aluminum alloys. Acta Metall Mater 42(10):3515–3525. https://doi.org/10.1016/0956-7151(94)90483-9

Aziz M (1982) Model for solute redistribution during rapid solidification. J Appl Phys 53(2):1158–1168

Boettinger WJ, Bendersky LA, Coriell SR, Schaefer RJ, Biancaniello FS (1987) Microsegregation in rapidly solidified Ag-15 wt%Cu alloys. J Cryst Growth 80(1):17–25. https://doi.org/10.1016/0022-0248(87)90518-5

Eckler K, Cochrane RF, Herlach DM, Feuerbacher B (1991) Non-equilibrium solidification in undercooled NiB alloys. Mater Sci Eng A 133:702–705. https://doi.org/10.1016/0921-5093(91)90166-K

Aziz MJ, Tsao JY, Thompson MO, Peercy PS, White CW (1986) Solute trapping: comparison of theory with experiment. Phys Rev Lett 56(23):2489–2492

Smith PM, Reitanot R, Aziz MJ (2011) Solute trapping in metals. MRS Proc. https://doi.org/10.1557/PROC-279-749

Aziz MJ, Kaplan T (1988) Continuous growth model for interface motion during alloy solidification. Acta Metall 36(8):2335–2347. https://doi.org/10.1016/0001-6160(88)90333-1

Nie P, Ojo OA, Li Z (2014) Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy. Acta Mater 77:85–95. https://doi.org/10.1016/j.actamat.2014.05.039

Zhong M, Sun H, Liu W, Zhu X, He J (2005) Boundary liquation and interface cracking characterization in laser deposition of Inconel 738 on directionally solidified Ni-based superalloy. Scripta Mater 53(2):159–164. https://doi.org/10.1016/j.scriptamat.2005.03.047

Carter LN, Attallah MM, Reed RC (2012) Laser powder bed fabrication of nickel-base superalloys: influence of parameters

characterisation, quantification and mitigation of cracking. In: Proceedings of the 12th international symposium on superalloys, Champion, PA, 9-13 September 2012, pp 577-586

Parimi LL, A RG, Clark D, Attallah MM (2014) Microstructural and texture development in direct laser fabricated IN718. Mater Charact 89:102–111. https://doi.org/10.1016/j.matchar.2013.12.012

Thakur A (1997) Microstructural responses of a nickel-base cast IN-738 superalloy to a variety of pre-weld heat-treatments. The University of Manitoba, Winnipeg, Manitoba