Microstructure, crystallization, microwave properties of (Mg0.95Co0.05)2(Ti1−xSnx)O4 spinel-type solid solution for microwave applications
Tóm tắt
The crystallization, microstructure analysis, and sintering behavior, microwave properties of (Mg0.95Co0.05)2(Ti1−xSnx)O4 ceramics, processed with raw powders of MgO, CoO, SnO2, and TiO2 via the conventional solid-state method are investigated. X-ray diffraction and X-ray spectroscopy analyses showed that the crystal structure of these samples was spinel-type. The microstructure with the substitution amount of Sn4+ and the dielectric performances of the (Mg0.95Co0.05)2(Ti1−xSnx)O4 ceramics were also explored. The (Mg0.95Co0.05)2(Ti1−xSnx)O4 ceramic could be sintered at 1350 °C, and the microwave dielectric performance was found to be strongly correlated with the sintering temperature. A maximum quality factor (Q×f) value of 330,000 (GHz), dielectric constant (εr) of 14.75, and temperature coefficient (τf) of −47.5 ppm/°C were achieved for samples sintered at 1350 °C for 4 h. (Mg0.95Co0.05)2(Ti0.97Sn0.03)O4 material system shows high potential for applications of high frequency-selection components in satellite communication and 5th Generation Mobile Communication Technology wireless telecommunication systems.
Tài liệu tham khảo
Pang, L.-X., Liu, H., Zhou, D., Yang, J.-X., Li, D.-J., Liu, W.-G.: Low-temperature sintering and microwave dielectric properties of Li3MO4 (M = Ta, Sb) ceramics. J. Alloys Compd. 525, 22–24 (2012)
Yuan-Bin C, Zong-Liang T, Lung-Chien C, Chien-Chi L, Hsin-Yuan M, Jih-Hsin L, Shih-Hung L Crystal structure and microwave dielectric properties of [(Mg0.6Zn0.4)0.95Co0.05]2TiO4-modified Ca0.6La0.8/3TiO3 cordierite ceramics with a near-zero temperature coefficient. J Mater Sci Mater Electron 29,13:10709-10714 (2018)
Bian, J.J., Wu, J.Y., Wang, L.: Structural evolution, sintering behavior and microwave dielectric properties of (1-x)Li3NbO4-xLiF(0≤x≤0.9). J. Eur. Ceram. Soc. 32, 1251–1259 (2012)
Huang, C.-L., Huang, S.-H.: Low-loss microwave dielectric ceramics in the (Co1−xZnx)TiO3 (x = 0–0.1) system. J. Alloys Compd. 515, 8–11 (2012)
Chen, Y.-C.: Elucidating the microwave dielectric properties of (Mg(1−x)Znx)2SnO4 ceramics. J. Alloys Compd. 527, 84–89 (2012)
Yuan-Bin C, Dielectric properties of low Zr-substituted BaTi4O9 at microwave frequencies. J Mater Sci Mater Electron 30, 5567–5572 (2019)
Parida, S., Rout, S.K., Subramanian, V., Barhai, P.K., Gupta, N., Gupta, V.R.: Structural, microwave dielectric properties and dielectric resonator antenna studies of Sr(ZrxTi1−x)O3 ceramics. J. Alloys Compd. 528, 126–134 (2012)
Wu, S.P., Chen, D.F., Mei, Y.X., Ma, Q.: Synthesis and microwave dielectric properties of Ca3SnSi2O9 ceramics. J. Alloys Compd. 521, 8–11 (2012)
Li, B.-J., Chen, J.-Y., Huang, G.-S., Jiang, C.-Y., Huang, C.-L.: Dielectric properties of B2O3-doped 0.92(Mg0.95Co0.05)2TiO4–0.08(Ca0.8Sr0.2)TiO3 ceramics for microwave applications. J. Alloys Compd. 505, 291–296 (2010)
Huang, C.L., Chen, J.Y.: High-Q microwave dielectrics in the (Mg1−xCox)2TiO4 ceramics. J. Am. Ceram. Soc. 92, 379–383 (2009)
Chen, Y.B.: Dielectric properties and crystal structure of Mg2TiO4 ceramics substituting Mg2+ with Zn2+ and Co2+. J. Alloys Compd. 513, 481–486 (2012)
Kim, M.H., Lim, J.B., Kim, J.C., Nahm, S., Paik, J.H., Kim, J.H.: Synthesis of BaCu(B2O5) ceramics and their effect on the sintering temperature and microwave dielectric properties of Ba(Zn1/3Nb2/3)O3 ceramics. J. Am. Ceram. Soc. 89, 3124–3128 (2006)
Kim, M.H., Nahm, S., Lee, W.S., Yoo, M.J., Kang, N.K., Kim, H.T., Lee, H.J.: Effort of B2O3 and CuO on the sintering temperature and microwave dielectric properties of Ba(Zn1/3Ta2/3)O3 ceramics. Jpn. J. Appl. Phys. 44, 3091 (2005)
Kim, M.H., Jeong, Y.H., Nahm, S., Kim, H.T., Lee, H.J.: Effect of B2O3 and CuO additives on the sintering temperature and microwave dielectric properties of Ba(Zn1/3Nb2/3)O3 ceramics. J. Eur. Ceram. Soc. 26, 2139–2142 (2006)
Mandal, S., Hemrick, J.G., Mahapatra, M.K.: Chrome-free qandilite (Mg2TiO4) refractory aggregates: role of titania source and evaluation of thermal expansion coefficient. J. Eur. Ceram. Soc. 42(15), 7343–7351 (2022)
Hakki, B.W., Coleman, P.D.: A dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE Trans. Microwave Theory & Tech. 8, 402 (1960)
Courtney, W.E., Temme, D.H.: Spinwave linewidth measurements with low-power RF sources (correspondence).IEEE Trans. Microwave Theory & Tech. 18, 476 (1970)
Leite, E.R., Cerri, J.A., Longo, E., Varela, J.A., Paskocima, C.A.: Sintering of ultrafine undoped SnO2 powder. J. Eur. Ceram. Soc. 21, 669–675 (2001)
O'Neill, H.S.C., Redfern, S.A.T., Kesson, S., Short, S.: An in situ neutron diffraction study of cation disordering in synthetic qandilite Mg2TiO4 at high temperatures. Am. Mineral. 88, 860–865 (2003)
Zhang, M., Li, L., Xia, W., Liao, Q.: Structure and properties analysis for MgTiO3 and (Mg0.97Mg0.03)TiO3 (M = Ni, Zn, Co and Mn) microwave dielectric materials. J. Alloy. Compd. 537, 76–79 (2012)
Shannon, R.D.: Dielectric polarizabilities of ions oxides and fluorides. J. Appl. Phys. 73, 348 (1993)
Glazer, A.M.: The classification of tilted octahedra in perovskites. Acta Cryst.B. 28, 3384 (1972)
Belous, A., Ovchar, O., Durilin, D.: High-Q microwave dielectric materials based on the spinel Mg2TiO4. J. Am. Ceram. Soc. 89, 3441–3445 (2006)
Huang, C.L., Liu, S.S.: Low-loss microwave dielectrics in the (Mg1−xZnx)2TiO4 ceramics. J. Am. Ceram. Soc. 91, 3428–3430 (2008)
Huang, C.L., Chen, J.Y.: Low-loss microwave dielectric ceramics using (Mg1−xMnx)2TiO4 (x=0.02–0.1) solid solution. J. Am. Ceram. Soc. 92, 675–678 (2009)
Huang, C.L., Ho, C.-E.: Microwave dielectric properties of (Mg1−xNix)2TiO4 (x=0.02–0.1) ceramics. Int. J. Appl. Ceram. Technol. 7, E163–E169 (2010)