Microstructure characterization and hardness distribution of 13Cr4Ni multipass weld metal

Materials Characterization - Tập 111 - Trang 128-136 - 2016
Mohsen Mokhtabad Amrei1, Hossein Monajati1, Denis Thibault2, Yves Verreman3, Lionel Germain4,5, Philippe Bocher1
1École de Technologie Supérieure, Montréal, Canada
2Institut de recherche d'Hydro-Québec, Montréal, Canada
3École Polytechnique de Montréal, Canada
4Université de Lorraine, Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3), UMR 7239, Metz F-57045, France
5Université de Lorraine, Labex DAMAS, Metz F-57045, France

Tài liệu tham khảo

Lippold, 2005 Thibault, 2009, Residual stress and microstructure in welds of 13%Cr–4%Ni martensitic stainless steel, J. Mater. Process. Technol., 209, 2195, 10.1016/j.jmatprotec.2008.05.005 Thibault, 2010, Residual stress characterization in low transformation temperature 13%Cr–4%Ni stainless steel weld by neutron diffraction and the contour method, Mater. Sci. Eng. A, 527, 6205, 10.1016/j.msea.2010.06.035 Zheng, 2010, Effect of carbon content on microstructure and mechanical properties of hot-rolled low carbon 12Cr–Ni stainless steel, Mater. Sci. Eng. A, 527, 7407, 10.1016/j.msea.2010.08.023 Folkhard, 1988 Wu, 2000, Relationship between alloying elements and retained austenite in martensitic stainless steel welds, Scr. Mater., 42, 1071, 10.1016/S1359-6462(00)00339-0 Voort, 2009, Martensite and retained austenite, Ind. Heat., 76, 51 Tsai, 2002, Phase transformation in AISI 410 stainless steel, Mater. Sci. Eng. A, A332, 1, 10.1016/S0921-5093(01)01710-5 Thibault, 2010, Reformed austenite transformation during fatigue crack propagation of 13%Cr–4%Ni stainless steel, Mater. Sci. Eng. A, 528, 6519, 10.1016/j.msea.2011.04.089 Zou, 2010, Influence of tempering process on mechanical properties of 00Cr13Ni4Mo supermartensitic stainless steel, J. Iron Steel Res. Int., 17, 50, 10.1016/S1006-706X(10)60128-8 Thibault, 2011, Reformed austenite transformation during fatigue crack propagation of 13%Cr–4%Ni stainless steel, Mater. Sci. Eng. A, 528, 6519, 10.1016/j.msea.2011.04.089 Bilmes, 1998 Song, 2010, Microstructural evolution and low temperature impact toughness of a Fe–13%Cr–4%Ni–Mo martensitic stainless steel, Mater. Sci. Eng. A, 527, 614, 10.1016/j.msea.2009.08.022 Bilmes, 2001, Characteristics and effects of austenite resulting from tempering of 13Cr–NiMo martensitic steel weld metals, Mater. Charact., 46, 285, 10.1016/S1044-5803(00)00099-1 Mokhtabad Amrei, 2015, Microstructure characterization of single and multipass 13Cr4Ni steel welded joints, Metallography, Microstructure, and Analysis, 1 Hydro-Québec, I.d.r., Scompi Robot, Robotic system for generating station work, U. Patent, Editor. 2011: Canada. Rietveld, 1969, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr., 2, 65, 10.1107/S0021889869006558 Germain, 2012, An advanced approach to reconstructing parent orientation maps in the case of approximate orientation relations: application to steels, Acta Mater., 60, 4551, 10.1016/j.actamat.2012.04.034 Rasband, 1997 Totten, 2007, 832 Carrouge, 2002 Wang, 2010, Effect of delta ferrite on impact properties of low carbon 13Cr–4Ni martensitic stainless steel, Mater. Sci. Eng. A, 527, 3210, 10.1016/j.msea.2010.01.085 Paquin, 2015, Assessment of cold cracking tests for low transformation temperature martensitic stainless steel multipass welds, Welding in the World, 1 Song, 2010, Formation of the reversed austenite during intercritical tempering in a Fe–13%Cr–4%Ni–Mo martensitic stainless steel, Mater. Lett., 64, 1411, 10.1016/j.matlet.2010.03.021 Song, 2011, The influence of tempering temperature on the reversed austenite formation and tensile properties in Fe–13%Cr–4%Ni–Mo low carbon martensite stainless steels, Mater. Sci. Eng. A, 528, 4075, 10.1016/j.msea.2011.01.078