Microstructure characterization and hardness distribution of 13Cr4Ni multipass weld metal
Tài liệu tham khảo
Lippold, 2005
Thibault, 2009, Residual stress and microstructure in welds of 13%Cr–4%Ni martensitic stainless steel, J. Mater. Process. Technol., 209, 2195, 10.1016/j.jmatprotec.2008.05.005
Thibault, 2010, Residual stress characterization in low transformation temperature 13%Cr–4%Ni stainless steel weld by neutron diffraction and the contour method, Mater. Sci. Eng. A, 527, 6205, 10.1016/j.msea.2010.06.035
Zheng, 2010, Effect of carbon content on microstructure and mechanical properties of hot-rolled low carbon 12Cr–Ni stainless steel, Mater. Sci. Eng. A, 527, 7407, 10.1016/j.msea.2010.08.023
Folkhard, 1988
Wu, 2000, Relationship between alloying elements and retained austenite in martensitic stainless steel welds, Scr. Mater., 42, 1071, 10.1016/S1359-6462(00)00339-0
Voort, 2009, Martensite and retained austenite, Ind. Heat., 76, 51
Tsai, 2002, Phase transformation in AISI 410 stainless steel, Mater. Sci. Eng. A, A332, 1, 10.1016/S0921-5093(01)01710-5
Thibault, 2010, Reformed austenite transformation during fatigue crack propagation of 13%Cr–4%Ni stainless steel, Mater. Sci. Eng. A, 528, 6519, 10.1016/j.msea.2011.04.089
Zou, 2010, Influence of tempering process on mechanical properties of 00Cr13Ni4Mo supermartensitic stainless steel, J. Iron Steel Res. Int., 17, 50, 10.1016/S1006-706X(10)60128-8
Thibault, 2011, Reformed austenite transformation during fatigue crack propagation of 13%Cr–4%Ni stainless steel, Mater. Sci. Eng. A, 528, 6519, 10.1016/j.msea.2011.04.089
Bilmes, 1998
Song, 2010, Microstructural evolution and low temperature impact toughness of a Fe–13%Cr–4%Ni–Mo martensitic stainless steel, Mater. Sci. Eng. A, 527, 614, 10.1016/j.msea.2009.08.022
Bilmes, 2001, Characteristics and effects of austenite resulting from tempering of 13Cr–NiMo martensitic steel weld metals, Mater. Charact., 46, 285, 10.1016/S1044-5803(00)00099-1
Mokhtabad Amrei, 2015, Microstructure characterization of single and multipass 13Cr4Ni steel welded joints, Metallography, Microstructure, and Analysis, 1
Hydro-Québec, I.d.r., Scompi Robot, Robotic system for generating station work, U. Patent, Editor. 2011: Canada.
Rietveld, 1969, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr., 2, 65, 10.1107/S0021889869006558
Germain, 2012, An advanced approach to reconstructing parent orientation maps in the case of approximate orientation relations: application to steels, Acta Mater., 60, 4551, 10.1016/j.actamat.2012.04.034
Rasband, 1997
Totten, 2007, 832
Carrouge, 2002
Wang, 2010, Effect of delta ferrite on impact properties of low carbon 13Cr–4Ni martensitic stainless steel, Mater. Sci. Eng. A, 527, 3210, 10.1016/j.msea.2010.01.085
Paquin, 2015, Assessment of cold cracking tests for low transformation temperature martensitic stainless steel multipass welds, Welding in the World, 1
Song, 2010, Formation of the reversed austenite during intercritical tempering in a Fe–13%Cr–4%Ni–Mo martensitic stainless steel, Mater. Lett., 64, 1411, 10.1016/j.matlet.2010.03.021
Song, 2011, The influence of tempering temperature on the reversed austenite formation and tensile properties in Fe–13%Cr–4%Ni–Mo low carbon martensite stainless steels, Mater. Sci. Eng. A, 528, 4075, 10.1016/j.msea.2011.01.078