Microstructure and Texture Evolution of Rolled Plate for Cu–15Cr In-Situ Composite
Tóm tắt
Từ khóa
Tài liệu tham khảo
J.B. Liu, L. Zhang, L. Meng, Effects of rare-earth additions on the microstructure and strength of Cu–Ag composites. Mater. Sci. Eng. A 498(1), 392–396 (2008). https://doi.org/10.1016/j.msea.2008.08.014
D. Raabe, S. Ohsaki, K. Hono, Mechanical alloying and amorphization in Cu–Nb–Ag in situ composite wires studied by transmission electron microscopy and atom probe tomography. Acta Mater. 57(17), 5254–5263 (2009). https://doi.org/10.1016/j.actamat.2009.07.028
K. Liu, Z. Jiang, J. Zhao et al., Thermal stability and properties of deformation-processed Cu–Fe in situ composites. Metall. Mater. Trans. A 46(5), 2255–2261 (2015). https://doi.org/10.1007/s11661-015-2791-x
Z. Rdzawski, W. Głuchowski, J. Stobrawa, W. Kempiński, B. Andrzejewski, Microstructure and properties of Cu–Nb and Cu–Ag nanofiber composites. Arch. Civ. Mech. Eng. 15(3), 689–697 (2015). https://doi.org/10.1016/j.acme.2014.12.002
K.S. Kormout, P. Ghosh, V. Maier-Kiener et al., Deformation mechanisms during severe plastic deformation of a Cu[sbnd]Ag composite. J. Alloys Compd. 695, 2285–2294 (2017). https://doi.org/10.1016/j.jallcom.2016.11.085
J. Bevk, J.P. Harbison, J.L. Bell, Anomalous increase in strength of in situ formed Cu–Nb multifilamentary composites. J. Appl. Phys. 49(12), 6031–6038 (1978). https://doi.org/10.1063/1.324573
D. Raabe, J. Ball, G. Gottstein, Rolling textures of a Cu–20%Nb composite. Scr. Metall. Mater. 27(2), 211–216 (1992). https://doi.org/10.1051/jp4:19937271
S. Mao, S. Shu, J. Zhou et al., Quantitative comparison of sink efficiency of Cu–Nb, Cu–V and Cu–Ni interfaces for point defects. Acta Mater. 82, 328–335 (2015). https://doi.org/10.1016/j.actamat.2.14.09.011
Q. Feng, L. Song, Y. Zeng et al., Evolution of FCC/BCC interface and its effect on the strengthening of severe drawn Cu–3wt.% Cr. J. Alloys Compd. 640, 45–50 (2015). https://doi.org/10.1016/j.jallcom.2015.03.226
Y. Jin, K. Adachi, T. Takeuchi et al., Microstructural evolution of a heavily cold-rolled CuCr in situ metal matrix composite. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 212(1), 149–156 (1996). https://doi.org/10.1016/0921-5093(96)10194-5
P. Maoxiemin, X. Dingwenjiang, In-situ composite Cu–Cr contact cables with high strength andhigh conductivity. Chin. J. Rare Met. 21(1), 62–66 (2004). https://doi.org/10.1002/qre.457
K. Adachi, S. Tsubokawa, T. Takeuchi et al., Strengthening mechanism of cold drawn wire of in situ Cu–Cr composite. J. Jpn. Inst. Met. 61, 397–403 (1997). https://doi.org/10.2320/jinstmet1952.61.5_397
K. Adachi, S. Tsubokawa, T. Takeuchi et al., Plastic deformation of Cr phase in Cu–Cr composite during cold rolling. J. Jpn. Inst. Met. 61, 391–396 (1997). https://doi.org/10.2320/jinstmet1952.61.5_391
Y. Jin, K. Adachi, T. Takeuchi et al., Correlation between the electrical conductivity and aging treatment for a Cu–15 wt%Cr alloy composite formed in situ. Mater. Lett. 32, 307–311 (1997). https://doi.org/10.1016/S0167-577X(97)00053-0
H.G. Suzuki, J. Ma, K. Mihara, S. Sakai, S. Sun, Effect of alloying elements on mechanical properties in Cu–15%Cr in situ composites. Trans. Nonferrous Met. Soc. China 14(2), 285–290 (2004). https://doi.org/10.4028/www.scientific.net/MSF.437-438.145
L.M. Bi, P. Liu, X.H. Chen et al., Analysis of phase in Cu–15%Cr–0.24%Zr alloy. Trans. Nonferrous Met. Soc. China 23(5), 1342–1348 (2013). https://doi.org/10.1016/S1003-6326(13)62602-3
W. Tian, L. Bi, J. Du, Microstructure evolution and thermal stability of Cu–15Cr in situ composites. J. Wuhan Univ. Technol. Mater. Sci. 33(1), 189–196 (2018). https://doi.org/10.1007/s11595-018-1804-1
S. Xing, L. Ping, B.I. Liming et al., Study on microstructure and properties of cold-rolling Cu–15Cr in-situ composite. Hot Work. Technol. 41(8), 96–99 (2012). https://doi.org/10.14158/j.cnki.1001-3814.2012.08.043
Beausir B, Fundenberger JJ (2017) Analysis tools for electron and X-ray diffraction. ATEX software. Retrieved April 3, 2020 from http://www.atex-software.eu
R.A. Lebensohn, C.N. Tomé, A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Metall. Mater. 41(9), 2611–2624 (1993). https://doi.org/10.1016/0956-7151(93)90130-k
K. Liu, Z. Wang, Z. Jiang et al., Cu–7Cr–0.1Ag microcomposites optimized for high strength and high condutivity. J. Mater. Eng. Perform. (2018). https://doi.org/10.1007/s11665-018-3221-1
K. Liu, D. Lu, H. Zhou, Microstructure and properties of a deformation-processed Cu–Cr–Ag in situ composite by directional solidification. J. Mater. Eng. Perform. 22(12), 3723–3727 (2013). https://doi.org/10.1007/s11665-013-0698-5
K. Liu, D. Lu, K. Fu et al., Evolution of microstructure in a Cu–Cr in situ composite produced by thermo-mechanical processing. J. Mater. Sci. Chem. Eng. 05(7), 29–35 (2017). https://doi.org/10.4236/msce.2017.57004
D. Raabe, U. Hangen, Simulation of the yield strength of wire drawn Cu-based in-situ composites. Comput. Mater. Sci. 5(1), 195–202 (1996). https://doi.org/10.1016/0927-0256(95)00072-0
U. Hangen, D. Raabe, Modelling of the yield strength of a heavily wire drawn Cu–20%Nb composite by use of a modified linear rule of mixtures. Acta Metall. Mater. 43(11), 4075–4082 (1995). https://doi.org/10.1016/0956-7151(95)00079-b
I.J. Beyerlein, N.A. Mara, D. Bhattacharyya et al., Texture evolution via combined slip and deformation twinning in rolled silver–copper cast eutectic nanocomposite. Int. J. Plast. 27(1), 121–146 (2011). https://doi.org/10.1016/j.ijplas.2010.05.007
F. Heringhaus, D. Raabe, U. Hangen, et al., Textures of Rolled and Wire Drawn Cu20%Nb. Mat. Sci. Forum 157(6), 709–14 (1994)
Mao Weiming, Zhang Xinming, Quantitative texture analysis of crystal materials (Metallurgical Industry Press, Beijing, 1993), pp. 20–64