Microstructure, Magnetic and Electronic Transport Properties of Co–TiO2 Nanocomposite Films in Metal Matrix

Springer Science and Business Media LLC - Tập 26 - Trang 3105-3114 - 2013
M. Poiana1, M. Dobromir1, V. Nica1, I. Sandu2, V. Georgescu1
1Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, Romania
2Faculty of Theology, “Alexandru Ioan Cuza” University of Iasi, Iasi, Romania

Tóm tắt

In this work, Co–TiO2 metallic composite films with a novel nanostructure have been electrodeposited in potentiostatic regime onto copper substrates, from a solution based on cobalt sulfate containing suspended TiO2 nanoparticles, with magnetic stirring of the electrolyte. The effect of deposited film thickness on the morphology, microstructure, and composition of the films was investigated by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and energy dispersive spectroscopy. Functional properties (magnetic and electronic transport) of films with different thicknesses were studied in a view to find out the possibility for some technological applications. Nanocomposite Co–TiO2 films contain three main phases: hcp Co crystalline grains (9–10 nm average size), TiO2 nanoparticles (28 nm average diameter) embedded in Co metallic matrix and Co(OH)2 adsorbed on the crystallite frontiers. The films display hysteresis (coercive field of 7.8÷11.9 kA/m) and significant values of magnetoresistance (with a maximum of −59 % in the case of 0.07 μm film thickness). These properties can be qualitatively explained both by the elastic spin-dependent scattering of the conduction electrons at the interface between the magnetic Co matrix grains and the nonmagnetic regions, and by occurrence of antiferromagnetic coupling between Co crystallites, favored by inclusion in film of TiO2 nanoparticles.

Tài liệu tham khảo

Camargo, P.H.C., Satyanarayana, K.G., Wypych, F.: Mater. Res. 12, 1–39 (2009) Hovestad, A., Janssen, L.J.J.: J. Appl. Electrochem. 25, 519–527 (1995) Gupta, S.M., Tripathi, M.: Chin. Sci. Bull. 16, 1639–1657 (2011) Hashimoto, K., Irie, H., Fujishima, A.: Jpn. J. Appl. Phys. 44, 8269–8285 (2005) Fujishima, A., Rao, T.N., Tryk, D.A.: J. Photochem. Photobiol., C, Photochem. Rev. 1, 1–21 (2000) Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, M., Ahmet, P., Chikyow, T., Koshihara, S.Y., Koinuma, H.: Science 291, 854–856 (2001) Chambers, S.A., Droubay, T., Wang, C.M., Lea, A.S., Farrow, R.F.C., Folks, L., Deline, V., Anders, S.: Appl. Phys. Lett. 82, 1257–1259 (2003) Soo, Y.L., Kioseoglou, G., Kim, S., Kao, Y.H., Sujatha Devi, P., Parise, J., Gambino, R.J., Gouma, P.I.: Appl. Phys. Lett. 81, 655–657 (2002) Bryan, J.D., Santangelo, S.A., Keveren, S.C., Gamelin, D.R.: J. Am. Chem. Soc. 127, 15568–15574 (2005) Wu, D., Chen, Y.F., Liu, J., Zhao, X.N., Li, A.D., Ming, N.B.: Appl. Phys. Lett. 87, 112501 (2005) Xu, X.G., Ding, X., Chen, Q., Peng, L.M.: Phys. Rev. B 73, 165403 (2006) Huang, C., Liu, X., Kong, L., Lan, W., Su, Q., Wang, Y.: Appl. Phys. A, Mater. Sci. Process. 87, 781–786 (2007) Wang, X.W., Gao, X.P., Li, G.R., Gao, L., Yan, T.Y., Zhub, H.Y.: Appl. Phys. Lett. 91, 143102 (2007) Ito, S., Deguchi, T., Imai, K., Iwasaki, M., Tada, H.: Electrochem. Solid-State Lett. 2, 440–442 (1999) De Tacconi, N.R., Boyles, A.A., Rajeshwar, K.: Langmuir 16, 5665–5672 (1999) Deguchi, T., Imai, K., Matsui, H., Iwasaki, M., Tada, H., Ito, S.: J. Mater. Sci. 36, 4723–4729 (2001) Sanjabi, S., Shirani, A.: Mater. Corros. 62, 1–8 (2011) Shirani, A., Momenzadeh, M., Sanjabi, S.: Surf. Coat. Technol. 206, 2870–2876 (2012) Rajiv, E.P., Seshadri, S.K.: J. Mater. Sci. 28, 1758–1764 (1993) Fa-min, L., Peng, D., Wei-mei, S., Tian-min, W.: Chin. J. Aeronaut. 20, 162–167 (2007) Poiană, M., Dobromir, M., Sandu, A.V., Georgescu, V.: J. Supercond. Nov. Magn. 25, 2377–2387 (2012) Poiană, M., Vlad, L., Pascariu, P., Sandu, A.V., Nica, V., Georgescu, V.O.: Adv. Mater. Rapid Commun. 6, 434–440 (2012) Podlaha, E.J., Li, Y., Zhang, J., Huang, Q., Panda, A., Lozano-Morales, A., Davis, D., Guo, Z.: Electrochemical deposition of nanostructured metals. In: Gogotsi, Y. (ed.) Nanomaterials Handbook, pp. 475–495. CRC Press, New York (2006) Cullity, B.D.: Elements of X-Ray Diffraction, 2nd edn. Addison-Wesley, Manila (1978) Moulder, J.F., et al.: In: Handbook of X-Ray Photoelectron Spectroscopy. Physical Electronics, Eden Prairie (1995) Jeong, B.S., Heo, Y.W., Norton, D.P., Kelly, J.G., Rairigh, R., Hebard, A.F., Budai, J.D., Park, Y.D.: Appl. Phys. Lett. 84, 2608–2610 (2004) Yang, J., Liu, H., Martens, W.N., Frost, R.L.: J. Phys. Chem. C 114, 111–119 (2010) Guglielmi, N.: J. Electrochem. Soc. 119, 1009–1012 (1972) Mitoseriu, O., Iticescu, C., Cârâc, G.: Rev. Chim. (Buchar.) 55, 525–529 (2004) Meiklejohn, W.H.: J. Appl. Phys., Suppl. 33, 1328–1335 (1962) Berkowitz, A.E., Takano, K.: J. Magn. Magn. Mater. 200, 552–570 (1999) Vavassori, P., Angeli, E., Bisero, D., Spizzo, F., Ronconi, F.: J. Magn. Magn. Mater. 262, 52–55 (2003) Vavassori, P., Spizzo, F., Angeli, E., Bisero, D., Ronconi, F.: J. Magn. Magn. Mater. 262, 120–123 (2003) Allia, P., Coisson, M., Selvaggini, V., Tiberto, P., Vinai, F.: J. Magn. Magn. Mater. 262, 39–46 (2003)