Microstructure Evolution, B2 Grain Size Uniformity, and Performance of a Powder Metallurgy Ti-22Al-25Nb Alloy during Solution Treatment
Tóm tắt
Từ khóa
Tài liệu tham khảo
C.J. Cowen and C.J. Boehlert, Microstructure, Creep, and Tensile Behavior of Boron-Modified Ti-15Al-33Nb (at.%), Metall. Mater. Trans. A, 2008, 39(2), p 279
C.J. Cowen and C.J. Boehlert, Microstructure, Creep, and Tensile Behavior of a Ti-21Al-29Nb (at.%) Orthorhombic + B2 Alloy, Intermetallics, 2006, 14(4), p 412–422
C.J. Boehlert, Microstructure, Creep, and Tensile Behavior of a Ti-12Al-38Nb (at.%) Beta + Orthorhombic Alloy, Mater. Sci. Eng. A, 1999, 267(1), p 82–98
C.J. Boehlert, The Tensile Behavior of Ti-Al-Nb O + Bcc Orthorhombic Alloys, Metall. Mater. Trans. A, 2001, 32(8), p 1977–1988
H.Z. Niu, Y.F. Chen, and D.L. Zhang, Fabrication of a Powder Metallurgy Ti2AlNb-Based Alloy by Spark Plasma Sintering and Associated Microstructure Optimization, Mater. Des., 2016, 89, p 823–829
L.M. Kang and C. Yang, A Review on High-Strength Titanium Alloys: Microstructure, Strengthening, and Properties, Adv. Eng. Mater., 2019, 21, p 1801359
Y.B. Sun, Y.Q. Zhao, D. Zhang, C.Y. Liu, H.Y. Diao, and C.L. Ma, Multilayered Ti-Al Intermetallic Sheets Fabricated by Cold Rolling and Annealing of Titanium and Aluminum Foils, Trans. Nonferr. Metals Soc. China, 2011, 21(8), p 1722–1727
J.L. Yang, G.F. Wang, and X.Y. Jiao, High-Temperature deformation Behavior of the Extruded Ti-22Al-25Nb alloy Fabricated By Powder Metallurgy, Mater. Charact., 2018, 137(16), p 170–179
B. Shao, Y.Y. Zong, D.S. Wen, Y.T. Tian, and D.B. Shan, Investigation of the Phase Transformations in Ti-22Al-25Nb alloy, Mater. Charact., 2016, 114, p 75–78
Y.J. Li, Y. Zhao, Q. Li, A.P. Wu, R.C. Zhu, and G.Q. Wang, Effects of Welding Condition on Weld Shape and Distortion in Electron Beam Welded Ti2AlNb Alloy Joints, Mater. Des., 2017, 114, p 226–233
L.H. Liu, C. Yang, F. Wang, S.G. Qu, X.Q. Li, W.W. Zhang, Y.Y. Li, and L.C. Zhang, Ultrafine Grained Ti-Based Composites with Ultrahigh Strength and Ductility Achieved by Equiaxing Microstructure, Mater. Des., 2015, 79, p 1–5
G.X. Wang and M. Dahms, TiAl-Based Alloys Prepared by Elemental Powder Metallurgy, Int. J. Powder Metall., 1992, 24, p 219–225
Y.H. Wang, J.P. Lin, Y.H. He, Y.L. Wang, Z. Lin, and G.L. Chen, Reaction Mechanism in High Nb Containing TiAl Alloy by Elemental Powder Metallurgy, Trans. Nonferr. Metals Soc. China, 2006, 16(4), p 853–857
C.M. Sellars and J.A. Whiteman, Recrystallization and Grain Growth in Hot Rolling, Metal Sci. J., 1978, 13(3–4), p 187–194
S. Emura, M. Hagiwara, and S.J. Yang, Room-Temperature Tensile and High-Cycle-Fatigue Strength of Fine TiB Particulate-Reinforced Ti-22Al-27Nb Composites, Metall. Mater. Trans. A, 2004, 35(9), p 2971–2979
S. Krishnamurthy, P.R. Smith, and D.B. Miracle, Modification of Transverse Creep Behavior of an Orthorhombic Titanium Aluminide Based Ti-22Al-23Nb/SiCf Composite Using Heat Treatment, Mater. Sci. Eng. A, 1998, 243(1–2), p 285–289
M.F. Semlitsh, H. Weber, R.M. Steicher, and R. Shön, Joint Replacement Components Made of Hot-Forged and Surface-Treated Ti-6Al-7Nb Alloy, Biomaterials, 1992, 13(11), p 781–788
Y. Sun, X.Y. Feng, L.X. Hu, H. Zhang, and H.Z. Zhang, Characterization on Hot Deformation Behavior of Ti-22Al-25Nb Alloy Using a Combination of 3D Processing Maps and Finite Element Simulation Method, J. Alloy. Compd., 2018, 753, p 256–271
J.B. Jia, K.F. Zhang, and S. Jiang, Microstructure and Mechanical Properties of Ti-22Al-25Nb Alloy Fabricated by Vacuum Hot Pressing Sintering, Mater. Sci. Eng. A, 2014, 616, p 93–98
K.H. Sim, G.F. Wang, J.M. Ju, J.L. Yang, and X. Li, Microstructure and Mechanical Properties of a Ti-22Al-25Nb Alloy Fabricated from Elemental Powders by Mechanical Alloying and Spark Plasma Sintering, J. Alloy. Compd., 2017, 704, p 425–433
J.R. Groza and A. Zavaliangos, Sintering Activation by External Electrical Field, Mater. Sci. Eng. A, 2000, 287(2), p 171–177
R. Orru, R. Licheri, A.M. Locci, A. Cincotti, and G. Cao, Consolidation/Synthesis of Materials by Electric Current Activated/Assisted Sintering, Mater. Sci. Eng. R, 2009, 63(4), p 127–287
J.B. Jia, W.C. Liu, Y. Xu, C. Lu, H.L. Liu, Y.F. Gu, and J.T. Luo, Microstructure Evolution, B2 Grain Growth Kinetics and Fracture Behavior of a Powder Metallurgy Ti-22Al-25Nb Alloy Fabricated by Spark Plasma Sintering, Mater. Sci. Eng. A, 2018, 730, p 106–118
C. Yang, M.D. Zhu, X. Luo, L.H. Liu, W.W. Zhang, Y. Long, Z.Y. Xiao, Z.Q. Fu, L.C. Zhang, and E.J. Lavernia, Influence of Powder Properties on Densification Mechanism During Spark Plasma Sintering, Scr. Mater., 2017, 139, p 96–99
C.J. Boehlert, B.S. Majumdar, V. Seetharaman, and D.B. Miracle, The Microstructural Evolution in Ti-Al-Nb O + Bcc Orthorhombic Alloys, Metall. Mater. Trans. A, 1999, 30(9), p 2305–2323
C. Yang, L.M. Kang, X.X. Li, W.W. Zhang, D.T. Zhang, Z.Q. Fu, Y.Y. Li, L.C. Zhang, and E.J. Lavernia, Bimodal Titanium Alloys with Ultrafine Lamellar Eutectic Structure Fabricated by Semi-solid Sintering, Acta Mater., 2017, 132, p 491–502
J.B. Jia, W.C. Liu, Y. Xu, C. Chen, Y. Yang, J.T. Luo, and K.F. Zhang, B2 Grain Growth Behavior of a Ti-22Al-25Nb Alloy Fabricated by Hot Pressing Sintering, J. Mater. Eng. Perform., 2018, 27, p 2288–2297
L. Song, X.J. Xu, J. Sun, and J.P. Lin, Cooling Rate Effects on the Microstructure Evolution in the βo Zones of Cast Ti-45Al-8.5Nb-(W, B, Y) Alloy, Mater. Charact., 2014, 93, p 62–67
M.A. Foster, P.R. Smith, and D.B. Miracle, The Effect of Heat Treatment on Tensile and Creep Properties of “NEAT” TI-22Al-23Nb in the Transverse Orientation, Scr. Metall. Mater., 1995, 33(6), p 975–981
E.A. Grey and G.T. Higgins, Solute Limited Grain Boundary Migration: A Rationalisation of Grain Growth, Acta Metall., 1973, 21(4), p 309–321
C. Xue, W.D. Zeng, W. Wang, X.B. Liang, and J.W. Zhang, Quantitative Analysis on Microstructure Evolution and Tensile Property for the Isothermally Forged Ti2AlNb Based Alloy During Heat Treatment, Mater. Sci. Eng. A, 2013, 573(3), p 183–189
F.J. Gil and J.A. Planell, Behavior of Normal Grain Growth Kinetics in Single Phase Titanium and Titanium Alloys, Mater. Sci. Eng. A, 2000, 283(1), p 17–24
D. Banerjee, D.M. Dimiduk, and M.G. Mendiratta, A New Ordered Orthorhombic Phase in a Ti3Al-Nb alloy, Acta Metall., 1988, 36(3), p 871–882
D.G. Lee, C.L. Li, Y.T. Lee, X.J. Mi, and W.J. Ye, Effect of Temperature on Grain Growth Kinetics of High Strength Ti-2Al-9.2Mo-2Fe alloy, Thermochim. Acta, 2014, 586, p 66–71
Y. Yu, C.L. Liu, S.X. Hui, W.J. Ye, W.Q. Wang, P.H. Zhang, and Y.L. Yang, Growth Kinetics of Ti-6554 Grains, Chin. J. Nonferr. Metals, 2010, 20(1), p 161–166
G.W. Greenwood, The Growth of Dispersed Precipitates in Solutions, Acta Metall., 1956, 4(3), p 243–248
J.E. Burke and D. Turnbull, Recrystallization and Grain Growth, Prog. Metal Phys., 1952, 3(3), p 220–292
E.O. Hall, The Lüders Deformation of Mild Steel, J. Photochem. Photobiol. B Biol., 1965, 13(2), p 534–540
Q.H. Fang, L. Li, J. Li, H.Y. Wu, Z.W. Huang, B. Liu, Y. Liu, and P.K. Liaw, A Statistical Theory of Probability-Dependent Precipitation Strengthening in Metals and Alloys, J. Mech. Phys. Solids, 2018, 122, p 177–189
Z. Ji, Y.H. Ch, Y.H. Qiang, C.J. Shen, and H.W. Li, Effect of Deformation of Constituent Phases on Mechanical Properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Titanium Alloy, Mater. Sci. Eng. A, 2018, 723, p 29–37