Microstructural evolution in sulfate solutions of alkali-activated binders synthesized at various calcium contents

Journal of Materials Research and Technology - Tập 9 - Trang 10377-10385 - 2020
Xing Li1,2, Owen Xu Li3, Feng Rao1,2, Shaoxian Song4, Noemi Ortiz-Lara2, Ena A. Aguilar-Reyes2
1School of Zijin Mining, Fuzhou University, Fuzhou, Fujian 350108, China
2CONACYT Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58030, Mexico
3The American School Foundation, Mexico City, 01120, Mexico
4School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China

Tài liệu tham khảo

Provis, 2013 Rao, 2015, Geopolymerization and its potential application in mine tailings consolidation: a review, Miner Process Extr Metall Rev, 36, 399, 10.1080/08827508.2015.1055625 Luukkonen, 2018, One-part alkali-activated materials: a review, Cem Concr Res, 103, 21, 10.1016/j.cemconres.2017.10.001 Khan, 2016, Synthesis of high strength ambient cured geopolymer composite by using low calcium fly ash, Constr Build Mater, 125, 809, 10.1016/j.conbuildmat.2016.08.097 Noushini, 2016, Compressive stress-strain model for low-calcium fly ash-based geopolymer and heat-cured Portland cement concrete, Cem Concr Compos, 73, 136, 10.1016/j.cemconcomp.2016.07.004 Mehta, 2017, Strength permeability and micro-structural characteristics of low-calcium fly ash based geopolymers, Constr Build Mater, 141, 325, 10.1016/j.conbuildmat.2017.03.031 Wang, 1995, Alkali-activated slag cement and concrete: a review of properties and problems, Adv Cem Res, 7, 93, 10.1680/adcr.1995.7.27.93 Escalante-García, 2003, Hydration products and reactivity of blast-furnace slag activated by various alkalis, J Am Ceram Soc, 86, 2148, 10.1111/j.1151-2916.2003.tb03623.x Fernández-Jiménez, 2003, Structure of calcium silicate hydrates formed in alkaline-activated slag: influence of the type of alkaline activator, J Am Ceram Soc, 86, 1389, 10.1111/j.1151-2916.2003.tb03481.x Myers, 2013, Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the cross-linked substituted tobermorite model, Langmuir, 29, 5294, 10.1021/la4000473 Bonk, 2003, Characterization by multinuclear high-resolution NMR of hydration products in activated blast-furnace slag pastes, J Am Ceram Soc, 86, 1712, 10.1111/j.1151-2916.2003.tb03545.x Schilling, 1994, 29Si and 27Al MAS-NMR of NaOH-activated blast-furnace slag, J Am Ceram Soc, 77, 2363, 10.1111/j.1151-2916.1994.tb04606.x Lothenbach, 2007, Hydration of alkali-activated slag: thermodynamic modelling, Adv Cem Res, 19, 81, 10.1680/adcr.2007.19.2.81 Chen, 2007, The hydration of slag, part 1: reaction models for alkali-activated slag, J Mater Sci, 42, 428, 10.1007/s10853-006-0873-2 Fernández-Jiménez, 2003, Characterisation of fly ashes. Potential reactivity as alkaline cements, Fuel, 82, 2259, 10.1016/S0016-2361(03)00194-7 Ben Haha, 2011, Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag-part I: effect of MgO, Cem Concr Res, 41, 955, 10.1016/j.cemconres.2011.05.002 Bernal, 2010, Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags, Cem Concr Res, 40, 898, 10.1016/j.cemconres.2010.02.003 Zhang, 2008, Structure characterization of hydration products generated by alkaline activation of granulated blast furnace slag, J Mater Sci, 43, 7141, 10.1007/s10853-008-3028-9 Provis, 2015, Advances in understanding alkali-activated materials, Cem Concr Res, 78, 110, 10.1016/j.cemconres.2015.04.013 Komljenovic, 2013, External sulfate attack on alkali-activated slag, Constr Build Mater, 49, 31, 10.1016/j.conbuildmat.2013.08.013 Long, 2017, Deterioration and microstructural evolution of the fly ash geopolymer concrete against MgSO4 solution, Adv Mater Sci Eng, 2017, 10.1155/2017/4247217 Mobili, 2016, Metakaolin and fly ash alkali-activated mortars compared with cementitious mortars at the same strength class, Cem Concr Res, 88, 198, 10.1016/j.cemconres.2016.07.004 Zhang, 2012, Potential application of geopolymers as protection coatings for marine concrete III: field experiment, Appl Clay Sci, 67, 57, 10.1016/j.clay.2012.05.008 Montes, 2012, Evaluation of the potential of geopolymer mortar in the rehabilitation of buried infrastructure, Struct Infrastruct Eng, 8, 89, 10.1080/15732470903329314 Zhang, 2018, Insights on magnesium and sulfate ions’ adsorption on the surface of sodium alumino-silicate hydrate (NASH) gel: a molecular dynamics study, Phys Chem Chem Phys, 20, 18297, 10.1039/C8CP02469C Rajamane, 2012, Sulphate resistance and eco-friendliness of geopolymer concretes, Indian Concr J, 86, 13 Salami, 2017, Durability performance of palm oil fuel ash-based engineered alkaline-activated cementitious composite (POFA-EACC) mortar in sulfate environment, Constr Build Mater, 131, 229, 10.1016/j.conbuildmat.2016.11.048 Bascarevic, 2015, Impact of sodium sulfate solution on mechanical properties and structure of fly ash based geopolymers, Mater Struct, 48, 683, 10.1617/s11527-014-0325-4 Provis, 2009 Bakharev, 2005, Durability of geopolymer materials in sodium and magnesium sulfate solutions, Cem Concr Res, 35, 1233, 10.1016/j.cemconres.2004.09.002 Chindaprasirt, 2012, Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems, J Mater Sci, 47, 4876, 10.1007/s10853-012-6353-y Alonso, 2001, Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio, Mater Lett, 47, 55, 10.1016/S0167-577X(00)00212-3 Van Deventer, 2007, Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products, J Hazard Mater, 13, 9506 Yip, 2008, Effect of calcium silicate sources on geopolymerisation, Cem Concr Res, 38, 554, 10.1016/j.cemconres.2007.11.001 Yip, 2005, The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation, Cem Concr Res, 35, 1688, 10.1016/j.cemconres.2004.10.042 Kumar, 2010, Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer, J Mater Sci, 45, 607, 10.1007/s10853-009-3934-5 De Weerdt, 2014, Changes in the phase assemblage of concrete exposed to sea water, Cem Concr Compos, 47, 53, 10.1016/j.cemconcomp.2013.09.015 Duxson, 2005, 29Si NMR study of structural ordering in aluminosilicate geopolymer gels, Langmuir, 21, 3028, 10.1021/la047336x Naghizadeh, 2019, Behaviour of fly ash geopolymer binders under exposure to alkaline media, Asian J Civ Eng, 1 De Silv, 2008, Medium-term phase stability of Na2O-Al2O3-SiO2-H2O geopolymer systems, Cem Concr Res, 38, 870, 10.1016/j.cemconres.2007.10.003 Fernández-Jiménez, 2005, Composition and microstructure of alkali activated fly ash binder: effect of the activator, Cem Concr Res, 35, 1984, 10.1016/j.cemconres.2005.03.003 Sukmak, 2014, Sulfate resistance of clay-portland cement and clay high-calcium fly ash geopolymer, J Mater Civ Eng, 27, 10.1061/(ASCE)MT.1943-5533.0001112 Lodeiro, 2010, Effect on fresh CSH gels of the simultaneous addition of alkali and aluminium, Cem Concr Res, 40, 27, 10.1016/j.cemconres.2009.08.004 Shi, 2000, High performance cementing materials from industrial slags-a review, Resour Conserv Recycl, 29, 195, 10.1016/S0921-3449(99)00060-9 Youngman, 2018, NMR spectroscopy in glass science: a review of the elements, Materials, 11, 476, 10.3390/ma11040476 Lee, 1999, The degree of aluminum avoidance in aluminosilicate glasses, Am Mineral, 84, 937, 10.2138/am-1999-5-630 Engelhardt, 1987 Richardson, 1999, The nature of CSH in hardened cements, Cem Concr Res., 29, 1131, 10.1016/S0008-8846(99)00168-4