Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sự tiến hóa của vi cấu trúc và tiếp nhận ứng suất không khớp trong hợp kim siêu bền Ni giàu γ′ trong quá trình chu kỳ nhiệt độ cao cực
Tóm tắt
Vi cấu trúc và độ lệch giao diện γ/γ′ của hợp kim siêu bền giàu γ′ trong quá trình chu kỳ nhiệt độ cao (25–1200 °C) đã được nghiên cứu. Sau đó, các mô hình phân tích về năng lượng ứng suất đàn hồi tổng, công việc dẻo, và lực cơ học tác động lên giao diện γ/γ′ liên quan đến độ lệch đã được xây dựng để mô tả khả năng tiếp nhận ứng suất lệch đàn hồi-dẻo trong suốt chu kỳ nhiệt độ. Tiền lắng γ′ lập phương dần dần hòa tan khi nhiệt độ vượt quá 900 °C. Các pha γ′ thứ cấp nhỏ lắng từ kênh γ vượt bão hòa trong giai đoạn làm nguội. Độ lệch mạng tinh thể phụ thuộc mạnh vào sự biến đổi của tỷ lệ thể tích γ′ trong quá trình chu kỳ nhiệt độ. Với khả năng tiếp nhận ứng suất lệch đàn hồi-dẻo, sự lắng đọng của γ′ thứ cấp có ảnh hưởng đáng kể đến trường ứng suất của ma trận γ. Năng lượng ứng suất đàn hồi mol tổng đầu tiên tăng lên và sau đó giảm xuống, đạt cực đại khoảng 600 °C trong giai đoạn làm nguội. Công việc dẻo tăng lên đáng kể từ 1100 đến 900 °C, và xu hướng tăng giảm dần khi nhiệt độ giảm từ 900 đến nhiệt độ phòng, dẫn đến ứng suất dẻo dần dần tích lũy trong quá trình làm nguội. Ngoài ra, khả năng tiếp nhận ứng suất lệch đàn hồi-dẻo ức chế sự lắng đọng của γ′ thứ cấp trong giai đoạn làm nguội.
Từ khóa
#vi cấu trúc #ứng suất không khớp #hợp kim siêu bền #γ′ #chu kỳ nhiệt độ caoTài liệu tham khảo
M. Mostafaei, S.M. Abbasi, Designing and characterization of Al-and Ta-bearing Ni-base superalloys based on d-electrons theory. Mater. Des. 127, 67–75 (2017)
Y.C. Lin, L.X. Yin, S.C. Luo, D.G. He, X.B. Peng, Effects of initial δ phase on creep behaviors and fracture characteristics of a nickel-based superalloy. Adv. Eng. Mater. 20, 1–7 (2018)
R.C. Reed, D.C. Cox, C.M.F. Rae, Damage accumulation during creep deformation of a single crystal superalloy at 1150 °C. Mater. Sci. Eng. A 448, 88–96 (2007)
F. Sun, J.X. Zhang, H. Harada, The critical resolved shear stress for twinning in a modern single crystal Ni-based superalloy TMS-82. Adv. Eng. Mater. 15, 1034–1039 (2013)
L. Mujica Roncery, I. Lopez-Galilea, B. Ruttert, S. Huth, W. Theisen, Influence of temperature, pressure, and cooling rate during hot isostatic pressing on the microstructure of a SX Ni-base superalloy. Mater. Des. 97, 544–552 (2016)
X.P. Tan, T. Jin, Effect of ruthenium on high-temperature creep rupture life of a single crystal nickel-based superalloy. Mater. Sci. Eng. A 528, 8381–8388 (2011)
A. Sato, H. Harada, A.C. Yeh, K. Kawagishi, T. Kobayashi, Y. Koizumi, T. Yokokawa, J.X. Zhang, A 5th generation SC superalloy with balanced high temperature properties and processability, in Superalloys 2008. ed. by R.C. Reed et al. (TMS, Warrendale, PA, 2008), pp. 131–138
X. Xiong, P. Dai, D. Quan, Z. Wang, Q. Zhang, Z. Yue, Intermediate temperature brittleness and directional coarsening behavior of nickel-based single-crystal superalloy DD6. Mater. Des. 86, 482–486 (2015)
X.P. Tan, Effect of Ru additions on very high temperature creep properties of a single crystal Ni-based superalloy. Mater. Sci. Eng. A 580, 21–35 (2013)
P. Caron, C. Ramusat, F. Diologent, Influence of the γ′ fraction on the γ/γ′ topological inversion during high temperature creep of single crystal superalloys, in Superalloy 2008. ed. by R.C. Reed et al. (TMS, Warrendale, PA, 2008), pp. 159–167
F. Diologent, P. Caron, T. d′Almeida, S. Chambreland, Temperature dependence of lattice mismatch and γ′ volume fraction of a fourth-generation monocrystalline nickel-based superalloy, Int. J. Mat. Res. (formerly Z. Metallkd.) 97, 2006, 1136-1142.
R.E. Hummel, Electronic properties of materials, 2nd edn. (Spriger-Verlag, Berlin, 1993)
A. Royer, P. Bastie, M. Veras, In situ determination of γ′ phase volume fraction and of relations between lattice parameters and precipitate morphology in Ni-based single crystal superalloy. Acta Mater. 46, 5357–5368 (1998)
J. Cormier, X. Milhet, J. Mendez, Effect of very high temperature short exposures on the dissolution of the γ′ phase in single crystal MC2 superalloy. J. Mater. Sci. 42, 7780–7786 (2007)
D.M. Collins, D.J. Crudden, E. Alabort, T. Connolley, R.C. Reed, Time-resolved synchrotron diffractometry of phase transformations in high strength nickel-based superalloys. Acta Mater. 94, 244–256 (2015)
Y. Wen, J. Simmons, C. Shen, C. Woodward, Y. Wang, Phase-field modeling of bimodal particle size distributions during continuous cooling. Acta Mater. 51, 1123–1132 (2003)
J. Cormier, M. Jouiad, F. Hamon, P. Villechaise, X. Milhet, Very high temperature creep behavior of a single crystal Ni-based superalloy under complex thermal cycling conditions. Phil Mag Lett. 90, 611–620 (2010)
J. Cormier, Thermal cycling creep resistance of ni-based single crystal superalloys, in Superalloys 2016. ed. by M. Hardy et al. (TMS, Warrendale, PA, 2016), pp. 385–394
R. Giraud, J. Cormier, Z. Hervier, D. Bertheau, K. Harris, J. Wahl, X. Milhet, J. Mendez, A. Organista, Effect of the prior microstructure degradation on the high temperature/low stress non-isothermal creep behavior of CMSX-4® Ni-based single crystal superalloy, Superalloys 2012, Seven Springs, PA, 2012, pp. 265–274.
R. Goti, B. Viguier, F. Crabos. Effect of thermal cycling on high temperature creep of coated CMSX-4, Superalloys 2012, Seven Springs, PA, 2012, pp. 411–419.
B. Viguier, F. Touratier, E. Andrieu, High-temperature creep of single-crystal nickel-based superalloy: microstructural changes and effects of thermal cycling. Philos Mag 91, 4427–4446 (2011)
S. Steuer, Z. Hervier, S. Thabart, C. Castaing, T.M. Pollock, J. Cormier, Creep behavior under isothermal and nonisothermal conditions of AM3 single crystal superalloy for different solutioning cooling rates. Mater. Sci. Eng. A 601, 145–152 (2014)
J.-B. Le Graverend, J. Cormier, F. Gallerneau, P. Villechaise, S. Kruch, J. Mendez, A microstructure-sensitive constitutive modeling of the inelastic behavior of single crystal nickel-based superalloys at very high temperature. Int. J. Plast. 59, 55–83 (2014)
T.M. Pollock, A.S. Argon, Creep resistance of CMSX-3 nickel base superalloy single crystals. Acta Metall. Mater. 40, 1–30 (1992)
S. Socrate, D.M. Parks, Numerical determination of the elastic driving force for directional coarsening in Ni-base superalloys. Acta Metall. Mater. 41, 2185–2201 (1993)
H. Mughrabi, U. Tetzlaff, Microstructure and high-temperature strength of monocrystalline nickel-base superalloys. Adv. Eng. Mater. 2, 319–326 (2000)
R. Schmidt, M. Feller-Kniepmeier, Effect of cooling and annealing on the phase composition of a nickel-base superalloy. Scripta Metall. Mater. 29, 863–868 (1993)
J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. Roy. Soc. A 241, 376–396 (1957)
W.C. Johnson, J.K. Lee, A dislocation model for the plastic relaxation of the transformation strain energy of a misfitting spherical particle. Acta Metall. 31, 1033–1045 (1983)
NYu. Gornostyrev, OYu. Kontsevoi, The role of thermal expansion and composition changes in the temperature dependence of the lattice misfit in two-phase γ/γ′ superalloys. Scripta Mater. 56, 81–84 (2007)
F. Pyczak, B. Devrient, H. Mughrabi, The effects of different alloying elements on the thermal expansion coefficients, lattice constants and misfit of nickel-based superalloys investigated by X-ray diffraction, in Superalloy 2004. ed. by K.A. Green et al. (TMS, Warrendale, PA, 2004), pp. 827–836
S.G. Tian, M.G. Wang, H.C. Yu, X.F. Yu, T.G. Li, B.J. Qian, Influence of element Re on lattice misfits and stress rupture properties of single crystal nickel-based superalloys. Mater. Sci. Eng. A 527, 4458–4465 (2010)
S. Neumeier, M. Dinkel, F. Pyczak, M. Goken, Nanoindentation and XRD investigations of single crystalline Ni-Ge brazed nickel-base superalloys PWA 1483 and René N5. Mater. Sci. Eng. A 528, 815–822 (2011)
F. Pyczak, S. Neumeierb, M. Göken, Influence of lattice misfit on the internal stress and strain states before and after creep investigated in nickel-base superalloys containing rhenium and ruthenium. Mater. Sci. Eng. A 510–511, 295–300 (2009)
D. Blavette, P. Caron, T. Khan, An atom probe study of some fine-scale microstructural features in Ni-based single crystal superalloys, in Superalloys 1988. ed. by S. Reichmann et al. (TMS, Warrendale, PA, 1988), pp. 305–314
S.S. Xiang, S.C. Mao, H. Wei, Y.N. Liu, J.X. Zhang, Z.J. Shen, H.B. Long, H.Y. Zhang, X.G. Wang, Z. Zhang, X.D. Han, Selective evolution of secondary γ′ precipitation in a Ni-based single crystal superalloy both in the g matrix and at the dislocation nodes. Acta Mater. 116, 343–353 (2016)
J. Cormier, V. Caccuri, J.-B. le Graverend, P. Villechaise, Comments on′Selective evolution of secondary γ′ precipitation in a Ni-based single crystal superalloy both in the γ matrix and at the dislocation nodes′. Scripta Mater. 129, 100–103 (2017)
T. Grosdidier, A. Hazotte, A. Simon, Precipitation and dissolution processes in γ′/γ′ single crystal nickel-based superalloys. Mater. Sci. Eng. A 256, 183–196 (1998)
H. Monajati, M. Jahazi, R. Bahrami, S. Yue, The influence of heat treatment conditions on γ′ characteristics in Udimet® 720☆. Mater. Sci. Eng. A 373, 286–293 (2004)
X.J. Zhao, R. Duddu, S.P.A. Bordas, J.M. Qu, Effects of elastic strain energy and interfacial stress on the equilibrium morphology of misfit particles in heterogeneous solids. J. Mech. Phys. Solids. 61, 1433–1445 (2013)
S.J. Song, F. Liu, Z.H. Zhang, Analysis of elastic-plastic accommodation due to volume misfit upon solid-state phase transformation. Acta Mater. 64, 266–281 (2014)
L. Luo, C. Ai, Y. Ma, S.S. Li, Y.L. Pei, S.K. Gong, Influence of temperature on the lattice misfit and elastic moduli of a Ni based single crystal superalloy with high volume fraction of γ′ phase. Mater. Charact. 142, 27–38 (2018)
J.K. Lee, Y.Y. Earmme, H.I. Aaronson, K.C. Russel, Plastic relaxation of the transformation strain energy of a misfitting spherical precipitate: ideal plastic behavior. Metall. Trans. A 11, 1837–1847 (1980)
Y.Y. Earmme, W.C. Johnson, J.K. Lee, Plastic relaxation of the transformation strain energy of a misfitting spherical precipitate: linear and power-law strain hardening. Metall. Trans. A 12, 1521–1530 (1981)
F.D. Fischer, A micromechanical model for transformation plasticity in steels. Acta Metall. Mater. 38, 1535–1546 (1990)
Sphere Packing. <http://mathworld.wolfram.com/SpherePacking.html>.
Wright omega function. <http://en.wikipedia.org/wiki/Wright_Omega_function>.
R.M. Corless, D.J. Jeffrey. In: J. Calmet, B. Benhamou, O. Caprotti, L. Henocque, V. Sorge, Artificial intelligence, automated reasoning, and symbolic computation, Springer Verlag, Berlin, 2002.
T. Mura, Micromechanics of defects in solids (Martinus Nijhoff, Dordrecht, 1987)
P. Fratzl, O. Penrose, J.L. Lebowitz, Modeling of phase separation in alloys with coherent elastic misfit. J. Stat. Phys. 95, 1429–1503 (1999)
P.E. Aba-Perea, T. Pirling, P.J. Withers, J. Kelleher, S. Kabra, M. Preuss, Determination of the high temperature elastic properties and diffraction elastic constants of Ni-base superalloys. Mater. Des. 89, 856–863 (2016)
D. Sieborger, H. Knake, U. Glatzel, Temperature dependence of the elastic moduli of the nickel-base superalloy CMSX-4 and its isolated phases. Mater. Sci. Eng. A 298, 26–33 (2001)
P. Caron, F. Diologent, S. Drawin, Influence of chemistry on the tensile yield strength of nickel-based single crystal superalloys. Adv. Mater. Res. 278, 345–350 (2011)
T. Siegmund, E. Werner, F.D. Fischer, On the thermomechanical deformation behavior of duplex-type materials. J. Mech. Phys. Solids 43, 495–532 (1995)
X.H. Zhao, Y.F. Han, Y.N. Tan, K.Q. Yin, Q. Yu, C.B. Xiao, The directionally solidified Ni3Al-based alloy IC6. J. Mater. Eng. 9, 13–14 (1997)
C. Campbell, W. Boettinger, U. Kattner, Development of a diffusion mobility data for Ni-base superalloys. Acta Mater. 50, 775–792 (2002)
Y. Chen, T. Slater, E. Lewis, E. Francis, M. Burke, M. Preuss, Measurement of size-dependent composition variations for gamma prime (γ′) precipitates in an commercial nickel-based superalloy. Ultramicroscopy 144, 1–8 (2014)
T. Rojhirunsakool, A.R.P. Singh, S. Nag, J.Y. Hwang, J. Tiley, R. Banerjee, Temporal evolution of non-equilibrium γ′ precipitates in a rapidly quenched nickel base superalloy. Intermetallics 54, 218–224 (2014)
F.D. Fischer, E.R. Oberaigner, Deformation, stress state, and thermodynamic force for a transforming spherical inclusion in an elastic-plastic material. J. Appl. Mech. 67, 793–796 (2000)
F.D. Fischer, G. Reisner, A criterion for the martensitic transformation of a microregion in an elastic-plastic material. Acta Mater. 46, 2095–2102 (1998)