Microstructural and failure mechanism of laser welded 2A97 Al–Li alloys via synchrotron 3D tomography
Tóm tắt
Từ khóa
Tài liệu tham khảo
Xiao, 2014, Problems and issues in laser beam welding of aluminum-lithium alloys, J. Manuf. Process., 16, 166, 10.1016/j.jmapro.2013.10.005
Dursun, 2014, Recent developments in advanced aircraft aluminium alloys, Mater. Des., 56, 862, 10.1016/j.matdes.2013.12.002
Gupta, 2006, Development and characterization of Al-Li alloys, Mater. Sci. Eng. A, 420, 228, 10.1016/j.msea.2006.01.045
Wu, 2016, On the fatigue performance of laser hybrid welded high Zn 7000 alloys for next generation railway components, Int. J. Fatig., 91, 1, 10.1016/j.ijfatigue.2016.05.017
Lin, 2003, A mechanism for the formation of equiaxed grains in welds of aluminum-lithium alloy 2090, Mater. Sci. Eng. A, 351, 304, 10.1016/S0921-5093(02)00858-4
Fu, 2014, Microstructure and mechanical properties of newly developed aluminum-lithium alloy 2A97 welded by fiber laser, Mater. Sci. Eng. A, 617, 1, 10.1016/j.msea.2014.08.038
Tao, 2016, Microstructural and mechanical characterization of aluminum-lithium alloy 2060 welded by fiber laser, J. Laser Appl., 28
Ning, 2017, Comparison of the microstructure and mechanical performance of 2A97 Al-Li alloy joints between autogenous and non-autogenous laser welding, Mater. Des., 120, 144, 10.1016/j.matdes.2017.02.003
Cui, 2012, Effect of Nd:YAG laser welding on microstructure and hardness of an Al-Li based alloy, Mater. Charact., 71, 95, 10.1016/j.matchar.2012.06.011
Zhang, 2016, Microstructure and mechanical properties of laser beam-welded AA2060 Al-Li alloy, J. Mater. Process. Technol., 237, 301, 10.1016/j.jmatprotec.2016.06.021
Ion, 2000, Laser beam welding of wrought aluminium alloys, Sci. Technol. Weld. Join., 5, 265, 10.1179/136217100101538308
Reddy, 1998, Chill zone formation in Al-Li alloy welds, Sci. Technol. Weld. Join., 3, 208, 10.1179/stw.1998.3.4.208
Lee, 1996, Microstructural and mechanical characterization of laser-beam welding of a 8090 Al-Li thin sheet, J. Mater. Sci., 31, 1455, 10.1007/BF00357853
Gutierrez, 1998, A proposed mechanism for equiaxed grain formation along the fusion boundary in aluminum-copper-lithium alloys, Weld. J., 77, 123
Gutierrez, 1996, Nondentritic equiaxed zone formation in Aluminum-Lithium welds, Mater. Sci. Forum, 217–222, 1691, 10.4028/www.scientific.net/MSF.217-222.1691
Wu, 2017, The imaging of failure in structural materials by synchrotron radiation X-ray microtomography, Eng. Fract. Mech., 182, 127, 10.1016/j.engfracmech.2017.07.027
Wu, 2016, Corner fatigue cracking behavior of hybrid laser AA7020 welds by synchrotron X-ray computed microtomography, Mater. Sci. Eng. A, 651, 604, 10.1016/j.msea.2015.11.011
Qian, 2006, Grain refinement of magnesium alloys by zirconium: formation of equiaxed grains, Scripta Mater., 54, 881, 10.1016/j.scriptamat.2005.11.002
Dev, 2008, Effects of base and filler chemistry and weld techniques on equiaxed zone formation in Al-Zn-Mg alloy welds, Sci. Technol. Weld. Join., 13, 598, 10.1179/174329308X300163
Kostrivas, 2006, Fusion boundary microstructure evolution in aluminium alloys, Weld. World, 50, 24, 10.1007/BF03263458
Wang, 2016, A characterization of microstructure and mechanical properties of A6N01S-T5 aluminum alloy hybrid fiber laser-MIG welded joint, Int. J. Adv. Manuf. Technol., 5, 1
Heidarzadeh, 2016, Correlation between process parameters, grain size and hardness of friction-stir-welded Cu-Zn alloys, Rare Met., 1
Mrva, 2011, The treatment of the surfaces of Mg-Al-Zn-Mn and Ti-Al-Nb alloys by shot peening, Acta Polytecnica Hung., 8, 33