Microstructural and Mechanical Properties of A356/Ni Alloys Produced by the Mechanochemical Method

Allerton Press - Tập 63 Số 2 - Trang 201-211 - 2022
Tansel Tunçay1
1Manufacturing Engineering Department, Technology Faculty, Karabuk University

Tóm tắt

Từ khóa


Tài liệu tham khảo

Samal, P.K. and Newkirk, J.W., Powder Metallurgy, Materials Park, OH: ASM Int., 2015, vol. 7.

Sherif El-Eskandarany, M., Mechanical Alloying: Nanotechnology, Materials Science and Powder Metallurgy, New York: William Andrew, 2015.

Benjamin, J.S. and Volin, T.E., The mechanism of mechanical alloying, Metall. Trans., 1974, vol. 5, no. 8, pp. 1929–1934.

Suryanarayana, C., Mechanical alloying and milling, Prog. Mater. Sci., 2001, vol. 46, pp. 1–84.

Sopicka-Lizer, M., High-Energy Ball Milling: Mechanochemical Processing of Nanopowders, Elsevier, 2010.

Murty, B.S. and Ranganathan, S., Novel materials synthesis by mechanical alloying/milling, Int. Mater. Rev., 1998, vol. 43, no. 3, pp. 101–141.

Liu, X.Q., Li, C.J., You, X., Xu, Z.Y., Li, X., Bao, R., Tao, J.M., and Yi, J.H., Size-dependent effects of Ti powders in the pure aluminum matrix composites reinforced by carbon nanotubes, J. Alloys Compd., 2020, vol. 823, no. 153824, pp. 1–9.

Tan, L., Li, Y., Deng, W., Liu, Y., Liu, F., Nie, Y., and Jiang, L., Tensile properties of three newly developed Ni-base powder metallurgy superalloys, J. Alloys Compd., 2019, vol. 804, pp. 322–330.

Dileep, B.P., Ravikumar, V., and Vital, H.R., Mechanical and corrosion behavior of Al-Ni-Sic metal matrix composites by powder metallurgy, Mater. Today: Proc., 2018, vol. 5, no. 5, pp. 12257–12264.

Hou, L., Li, B., Wu, R., Cui, L., Ji, P., Long, R., Zhang, J., Li, X., Dong, A., and Sun, B., Microstructure and mechanical properties at elevated temperature of Mg–Al–Ni alloys prepared through powder metallurgy, J. Mater. Sci. Technol., 2017, vol. 33, no. 9, pp. 947–953.

Jiang, H., Ye, S., Ma, R., and Yu, P., Influences of sintering parameters on shape-retention ability of porous Ni3Al intermetallic fabricated by powder metallurgy, Intermetallics, 2019, vol. 105, pp. 48–55.

Shevtsova, L., Mali, V., Bataev, A., Anisimov, A., and Dudina, D., Microstructure and mechanical properties of materials obtained by spark plasma sintering of Ni3Al–Ni powder mixtures, Mater. Sci. Eng., A, 2020, vol. 773, no. 138882, pp. 1–8.

Mahday, A.A., Sherif El-Eskandarany, M., Ahmed, H.A., and Amer, A.A., Mechanically induced solid state carburization for fabrication of nanocrystalline ZrC refractory material powders, J. Alloys Compd., 2020, vol. 299, nos. 1–2, pp. 244–253.

Semel, F.J. and Lados, D.A., Porosity analysis of PM materials by helium pycnometry, Powder Metall., 2006, vol. 49, no. 2, pp. 173–182.

Khorsand, H., Yoozbashizade, H., Habibi, S.M., Janghorban, K., Nangir, A., and Reihani, S.M.S., Carbon, porosity and fatigue in sintered steel, Met. Powder Rep., 2002, vol. 57, no. 4, pp. 32–36.

Danninger, H., de Oro Calderon, R., and Gierl-Mayer, C., Powder metallurgy and sintered materials, in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, 2017, pp. 1–57.

Jiang, H., Ye, S., Ma, R., and Yu, P., Influences of sintering parameters on shape-retention ability of porous Ni3Al intermetallic fabricated by powder metallurgy, Intermetallics, 2019, vol. 105, pp. 48–55.

Abuthakir, J., Subramanian, R., Kavitha, M., Venkatesh, G., Krishna kumar, K., and Manikandan, P., Corrosion studies of Alx–Ni insitu intermetallics reinforced Al metal matrix composites, Mater. Today: Proc., 2020, vol. 28, no. 2, pp. 1158–1163.

Kwiecien, I., Bobrowski, P., Wierzbicka-Miernik, A., Litynska-Dobrzynska, L., and Wojewoda-Budka, J., Growth kinetics of the selected intermetallic phases in Ni/Al/Ni system with various nickel substrate microstructure, Nanomaterials, 2019, vol. 9, no. 2, pp. 1–18.

Rzyman, K. and Moser, Z., Calorimetric studies of the enthalpies of formation of Al3Ni2, AlNi, and AlNi3, Prog. Mater. Sci., 2004, vol. 49, nos. 3–4, pp. 581–606.

Elkady, O.A., Abolkassem, S.A., Elsayed, A.H., Hussein, W.A, and Hussein, K.F.A., Microwave absorbing efficiency of Al matrix composite reinforced with nano-Ni/SiC particles, Results Phys., 2019, vol. 12, pp. 687–700.

Bao, C.M., Dahlborg, U., Adkins, N., and Calvo-Dahlborg, M., Structural characterisation of Al–Ni powders produced by gas atomisation, J. Alloys Compd., 2009, vol. 481, nos. 1–2, pp. 199–206.

Deng, Z., Yin, H., Zhang, C., Zhang, G., Li, W., Zhang, T., Zhang, R., Jiang, X., and Qu, X., Microstructure and mechanical properties of Cu–12Al–xNi alloy prepared using powder metallurgy, Mater. Sci. Eng., A, 2019, vol. 759, pp. 241–251.

German, R.M., Suri, P., and Park, S.J., Review: Liquid phase sintering, J. Mater. Sci., 2009, vol. 44, pp. 1–39.