Microstructural and Geometrical Effects on the Deformation Behavior of Sub-micron Scale Nanocrystalline Copper Pillars
Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science - Tập 47 - Trang 1061-1071 - 2015
Tóm tắt
The effects of microstructure, sample dimensions, and cross-sectional geometry on the deformation characteristics of electroplated nanocrystalline copper sub-micron pillars are investigated. Nanocrystalline copper pillars were produced with four types of geometry—solid core, hollow, c-shaped, and x-shaped—with outer diameters of ~1000 or 220 nm and three different average grain sizes (between 5.1 and 49.3 nm). Flow stress results from uniaxial compression tests of 1000- and 220-nm-outer-diameter pillars, with average grain sizes in the range between ~32 and 50 nm, revealed there are no observable strength dependences with the pillar cross-sectional geometries. This suggests that they behave with bulk-like character: mechanical properties independent of size and sample geometry. All of the pillar specimens examined exhibit an increase in mechanical strength with reduction of grain sizes, but soften as the crystalline dimensions are smaller than 10 to 20 nm threshold limits. Interestingly, pillars with outer diameters of 220 nm are distinctively softer than the 1000-nm-diameter samples when their grain size is at and below this threshold limit. These results indicate a strength specimen size effect exists for such fine grain copper pillars.
Tài liệu tham khảo
N. J. Petch, “The cleavage strength of polycrystals.,” J. Iron Steel Inst., vol. 174, pp. 25–28, Jun. 1953.
E. O. Hall, “The Deformation and Ageing of Mild Steel: III Discussion of Results,” Proc. Phys. Soc., vol. 64, pp. 747–753, 1951.
B. Yang, C. Motz, M. Rester, and G. Dehm, “Yield stress influenced by the ratio of wire diameter to grain size – a competition between the effects of specimen microstructure and dimension in micro-sized polycrystalline copper wires,” Philos. Mag., vol. 92, no. 25–27, pp. 3243–3256, Sep. 2012.
C. A. Schuh, T. G. Nieh, and T. Yamasaki, “Hall–Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel,” Scr. Mater., vol. 46, no. 10, pp. 735–740, May 2002.
H. Bahmanpour, K. M. Youssef, J. Horky, D. Setman, M. A. Atwater, M. J. Zehetbauer, R. O. Scattergood, and C. C. Koch, “Deformation twins and related softening behavior in nanocrystalline Cu–30% Zn alloy,” Acta Mater., vol. 60, no. 8, pp. 3340–3349, May 2012.
S. Cheng, E. Ma, Y. Wang, L. Kecskes, K. Youssef, C. Koch, U. Trociewitz, and K. Han, “Tensile properties of in situ consolidated nanocrystalline Cu,” Acta Mater., vol. 53, no. 5, pp. 1521–1533, Mar. 2005.
C. E. Carlton and P. J. Ferreira, “What is behind the inverse Hall–Petch effect in nanocrystalline materials?,” Acta Mater., vol. 55, no. 11, pp. 3749–3756, Jun. 2007.
M. A. Meyers, A. Mishra, and D. J. Benson, “Mechanical properties of nanocrystalline materials,” Prog. Mater. Sci., vol. 51, no. 4, pp. 427–556, May 2006.
C. J. Youngdahl, P. G. Sander, J. A. Eastman, and J. R. Weertman, “COMPRESSIVE YIELD STRENGTHS OF NANOCRYSTALLINE Cu AND Pd,” Scr. Mater., vol. 37, no. 6, pp. 809–813, 1997.
H. Conrad and J. Narayan, “On the grain size softening in nanocrystalline materials,” Scr. Mater., vol. 42, no. 11, pp. 1025–1030, May 2000.
P. G. Sanders, J. A. Eastman, and J. R. Weertman, “Elastic and tensile behavior of nanocrystalline copper and palladium,” Acta Mater., vol. 45, no. 10, pp. 4019–4025, Oct. 1997.
N. L. Okamoto, D. Kashioka, T. Hirato, and H. Inui, “Specimen- and grain-size dependence of compression deformation behavior in nanocrystalline copper,” Int. J. Plast., vol. 56, pp. 173–183, May 2014.
B. Cai, Q. P. Kong, L. Lu, and K. Lu, “Interface controlled diffusional creep of nanocrystalline pure copper,” Scr. Mater., vol. 41, no. 7, pp. 755–759, Aug. 1999.
A. Chokshi, A. Rosen, J. Karch, and H. Gleiter, “On the validity of the Hall-Petch Relationship in Nanocrystalline Materials,” Scr. Metall., vol. 23, pp. 1679–1684, 1989.
T. J. Rupert, D. S. Gianola, Y. Gan, and K. J. Hemker, “Experimental observations of stress-driven grain boundary migration.,” Science, vol. 326, no. 5960, pp. 1686–90, Dec. 2009.
L. Lu, Science., vol. 287, no. 5457, pp. 1463–1466, Feb. 2000.
G. Mohanty, J. M. Wheeler, R. Raghavan, J. Wehrs, M. Hasegawa, S. Mischler, L. Philippe, and J. Michler, “Elevated temperature, strain rate jump microcompression of nanocrystalline nickel,” Philos. Mag., vol. 95, no. 16–18, pp. 1878–1895, 2015.
J. M. Wheeler, V. Maier, and K. Durst (2013) Materials Science and Engineering: A 585:108-113.
Z. Sun, S. Van Petegem, A. Cervellino, K. Durst, W. Blum, and H. Van Swygenhoven, “ScienceDirect Dynamic recovery in nanocrystalline Ni,” Acta Mater., vol. 91, pp. 91–100, 2015.
J. Chen, L. Lu, and K. Lu, “Hardness and strain rate sensitivity of nanocrystalline Cu,” Scr. Mater., vol. 54, no. 11, pp. 1913–1918, Jun. 2006.
X. Sun, R. Reglero, X. Sun, and M. J. Yacaman, “Microhardness of bulk and higher density nanocrystalline copper obtained by hot compaction,” Mater. Chem. Phys., vol. 63, no. 1, pp. 82–87, Feb. 2000.
Y. Xiang and J. J. Vlassak, “Bauschinger and size effects in thin-film plasticity,” Acta Mater., vol. 54, no. 20, pp. 5449–5460, Dec. 2006.
L. Nicola, Y. Xiang, J. J. Vlassak, E. Van der Giessen, and a. Needleman, “Plastic deformation of freestanding thin films: Experiments and modeling,” J. Mech. Phys. Solids, vol. 54, no. 10, pp. 2089–2110, Oct. 2006.
D. Jang, C. Cai, and J. R. Greer, “Influence of homogeneous interfaces on the strength of 500 nm diameter Cu nanopillars.,” Nano Lett., vol. 11, no. 4, pp. 1743–6, Apr. 2011.
X. W. Gu, C. N. Loynachan, Z. Wu, Y.-W. Zhang, D. J. Srolovitz, and J. R. Greer, “Size-dependent deformation of nanocrystalline Pt nanopillars.,” Nano Lett., vol. 12, no. 12, pp. 6385–92, Dec. 2012.
M. J. Burek, S. Jin, M. C. Leung, Z. Jahed, J. Wu, A. S. Budiman, N. Tamura, M. Kunz, and T. Y. Tsui, “Grain boundary effects on the mechanical properties of bismuth nanostructures,” Acta Mater., vol. 59, no. 11, pp. 4709–4718, Jun. 2011.
M. J. Burek and J. R. Greer, “Fabrication and microstructure control of nanoscale mechanical testing specimens via electron beam lithography and electroplating.,” Nano Lett., vol. 10, no. 1, pp. 69–76, Jan. 2010.
A. T. Jennings, M. J. Burek, and J. R. Greer, “Microstructure versus Size: Mechanical Properties of Electroplated Single Crystalline Cu Nanopillars,” Phys. Rev. Lett., vol. 104, no. 13, pp. 1–4, Apr. 2010.
M. Hakamada, Y. Nakamoto, H. Matsumoto, H. Iwasaki, Y. Chen, H. Kusuda, and M. Mabuchi, “Relationship between hardness and grain size in electrodeposited copper films,” Mater. Sci. Eng. A, vol. 457, no. 1–2, pp. 120–126, May 2007.
Y. M. Wang, R. T. Ott, T. van Buuren, T. M. Willey, M. M. Biener, and A. V. Hamza, “Controlling factors in tensile deformation of nanocrystalline cobalt and nickel,” Phys. Rev. B, vol. 85, no. 1, p. 014101, Jan. 2012.
Z. Jahed, S. Jin, M. J. Burek, and T. Y. Tsui, “Fabrication and buckling behavior of polycrystalline palladium, cobalt, and rhodium nanostructures,” Mater. Sci. Eng. A, vol. 542, pp. 40–48, Apr. 2012.
R. K. Guduru, K. L. Murty, K. M. Youssef, R. O. Scattergood, and C. C. Koch, “Mechanical behavior of nanocrystalline copper,” Mater. Sci. Eng. A, vol. 463, no. 1–2, pp. 14–21, Aug. 2007.
B. Farrokh and A. S. Khan, “Grain size, strain rate, and temperature dependence of flow stress in ultra-fine grained and nanocrystalline Cu and Al: Synthesis, experiment, and constitutive modeling,” Int. J. Plast., vol. 25, no. 5, pp. 715–732, May 2009.
S. Nakahara, “The Effect of Grain Size on Ductility and Impurity Content of Electroless Copper Deposits,” J. Electrochem. Soc., vol. 136, no. 4, p. 1120, 1989.
Y. Okinaka, “The Effect of Inclusions on the Ductility of Electroless Copper Deposits,” J. Electrochem. Soc., vol. 133, no. 12, p. 2608, 1986.
K. S. Kumar and K. Biswas, “Surface & Coatings Technology Effect of thiourea on grain refinement and defect structure of the pulsed electrodeposited nanocrystalline copper,” Surf. Coat. Technol., vol. 214, pp. 8–18, 2013.
D. Jang and J. R. Greer, “Size-induced weakening and grain boundary-assisted deformation in 60 nm grained Ni nanopillars,” Scr. Mater., vol. 64, no. 1, pp. 77–80, Jan. 2011.
K. Zhou, B. Liu, Y. Yao, and K. Zhong, “Effects of grain size and shape on mechanical properties of nanocrystalline copper investigated by molecular dynamics,” Mater. Sci. Eng. A, vol. 615, pp. 92–97, Oct. 2014.