Microstructural Characterization and Mechanical Performance of Hot Work Tool Steel Processed by Selective Laser Melting

Metallurgical and Materials Transactions B - Tập 46 - Trang 545-549 - 2015
Martin Joachim Holzweissig1, Alexander Taube1,2, Florian Brenne1,2, Mirko Schaper1, Thomas Niendorf3
1Lehrstuhl für Werkstoffkunde (Materials Science), University of Paderborn, Paderborn, Germany
2Direct Manufacturing Research Center (DMRC), Paderborn, Germany
3Institute of Materials Engineering, Technische Universität Bergakademie Freiberg, Freiberg, Germany

Tóm tắt

Microstructural characterization of hot work tool steel processed by selective laser melting was carried out. The findings shed light on the interrelationship between processing parameters and the microstructural evolution. It was found that the microstructure after layer-wise processing partially consists of metastable-retained austenite which transforms to martensite in a subsequent tensile test. This improves the mechanical properties of the hot work tool steel enabling direct application.

Tài liệu tham khảo

L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina and R.B. Wicker: J. Mater. Sci. Technol., 2012, vol. 28, pp. 1-14.

C. Emmelmann, P. Sander, J. Kranz and E. Wycisk: Physics Procedia, 2011, vol. 12, pp. 364-8.

E. Brandl, B. Baufeld, C. Leyens and R. Gault: Physics Procedia, 2010, vol. 5, pp. 595-606.

X.Y. Cheng, S.J. Li, L.E. Murr, Z.B. Zhang, H.L. Hao, R. Yang, F. Medina and R.B. Wicker: J. Mech. Behav. Biomed. Mater., 2012, vol. 16, pp. 153-62.

B. Baufeld, O. van der Biest and R. Gault: Mater. Des., 2010, vol. 31, pp. 106-11.

L. Thijs, K. Kempen, J.P. Kruth and J. van Humbeeck: Acta Mater., 2013, vol. 61, pp. 1809-19.

T. Niendorf, S. Leuders, A. Riemer, H.A. Richard, T. Tröster and D. Schwarze: Metall. Mater. Trans. B, 2013, vol. 44, pp. 794-6.

T. Wohlers: Wohlers Report 2012, Wohlers Associates Inc., Colorado, 2012.

S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H.A. Richard and H.J. Maier: Int. J. Fatigue, 2013, vol. 48, pp. 300-7.

B. Gorny, T. Niendorf, J. Lackmann, M. Thöne, T. Tröster and H.J. Maier: Mater. Sci. Eng. A, 2011, vol. 528, pp. 7962-7.

B. Vrancken, L. Thijs, J.P. Kruth and J. van Humbeeck: J. Alloys Compd., 2012, vol. 541, pp. 177-85.

E. Yasa and J.P. Kruth: Procedia Eng., 2011, vol. 19, pp. 389-95.

K.N. Amato, S.M. Gaytan, L.E. Murr, E. Martinez, P.W. Shindo, J. Hernandez, S. Collins and F. Medina: Acta Mater., 2012, vol. 60, pp. 2229-39.

D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners and J. Bültmann: Physics Procedia, 2011, vol. 12, pp. 271-8.

O.M. Al-Jamal, S. Hinduja and L. Li: CIRP, 2008, vol. 57, pp. 239-42.

I. Yadroitsev, A. Gusarov, I. Yadroitsava and I. Smurov: J. Mat. Pro. Tec., 2010, vol. 210, pp. 1624-31.

M. Badrossamay and T.H.C. Childs: Int. J. Mach. Tools. Manuf., 2007, vol. 47, pp. 779-84.

T. Niendorf, F. Brenne and M. Schaper: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1181-5.

A.V. Gusarov, I. Yadroitsev, P. Bertrand and I. Smurov: Appl. Sur. Sci., 2007, vol. 254, pp. 975-9.

D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock and J.G. Speer: Mater. Sci. Eng. A, 2006, vol. 438-440, pp. 25-34.

R. Zhu, S. Li, I. Karaman, R. Arroyave, T. Niendorf and H.J. Maier: Acta Mater., 2012, vol. 60, pp. 3022-33.

E.A. Wilson: ISIJ, 1994, vol. 34, pp. 615-30.

P. Kanagarajah, F. Brenne, T. Niendorf and H.J. Maier: Mater. Sci. Eng. A, 2013, vol. 588, pp. 188-95.

J. Speer, D.K. Matlock, B.C. De Cooman and J.G. Schroth: Acta Mater., 2003, vol. 51, pp. 2611-22.

L. Papadakis, A. Loizou, J. Risse, S. Bremen and J. Schrage: Vir. Phys. Prot., 2014, vol. 9, pp. 17-25.