Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Giám sát vi mô bằng sóng siêu âm trong các thí nghiệm thủy lực trong phòng thí nghiệm trên đá granit cho các chế độ lan truyền nứt khác nhau
Rock Mechanics and Rock Engineering - Trang 1-25 - 2023
Tóm tắt
Mặc dù khoan nứt thủy lực (HF) là một quy trình được sử dụng rộng rãi, các quy trình nứt nền tảng vẫn còn gây tranh cãi lớn. Các thuộc tính của mạng lưới nứt do HF tạo ra có thể cho thấy sự biến đổi đáng kể khi xử lý các chế độ lan truyền HF cụ thể gặp phải trong thực địa. Trong nghiên cứu này, các thí nghiệm HF được thực hiện trên các khối đá granit Barre chịu lực triaxial thực, với sự giám sát vi mô, nhằm xác định và đặc trưng hóa các cơ chế nứt liên quan đến các chất lỏng tiêm có độ nhớt khác nhau. Việc sử dụng các chất lỏng có độ nhớt cao (dầu/1450 cP) và thấp (nước/1 cP) đại diện cho hai chế độ lan truyền HF chủ yếu: chế độ chi phối bởi độ nhớt và độ bền. Các thí nghiệm được thực hiện với dầu liên quan đến áp suất vỡ cao hơn, thể tích chất lỏng lớn hơn và tốc độ lan truyền nứt chậm hơn. Phân bố tần số-kích thước (giá trị b) cho tất cả các thí nghiệm (1.9–2.3) tương tự như những gì gặp phải trong các hoạt động quy mô lớn. Các giá trị b hơi lớn hơn đã được quan sát trong giai đoạn khởi đầu (2.4–2.7) so với các giai đoạn lan truyền nứt và sau nứt (1.9–2.2). Các kỹ thuật như đảo cực và đảo ngược tensor mômen đã được sử dụng để đặc trưng hóa các cơ chế nguồn. Đối với các thí nghiệm HF với dầu, nứt kéo là dạng nứt chiếm ưu thế nhất (92%) trong giai đoạn khởi đầu so với giai đoạn lan truyền nứt và giai đoạn sau nứt (70–75%). Sự chiếm ưu thế của nứt kéo tương tự không được quan sát thấy với nước, có thể do sự thẩm thấu chất lỏng và rò rỉ. Bất kể chất lỏng tiêm hay tiêu chí phân loại nào được sử dụng, nứt kéo luôn là loại nứt chiếm ưu thế nhất, với số lượng ít hơn xảy ra trong các thí nghiệm với nước nhưng tỷ lệ cụ thể của các loại nứt thay đổi với các tiêu chí cơ chế nguồn khác nhau được sử dụng.
Từ khóa
Tài liệu tham khảo
Aki K (1965) Maximum likelihood estimate of b in the formula log N= a-bM and its confidence limits. Bull Earthq Res Inst Tokyo Univ 43:237–239
Baig A, Urbancic T (2010) Microseismic moment tensors: a path to understanding frac growth. Lead Edge 29(3):320–324
Bair S (2016) The temperature and pressure dependence of viscosity and volume for two reference liquids. Lubr Sci 28(2):81–95
Bett KE, Cappi JB (1965) Effect of pressure on the viscosity of water. Nature 207(4997):620–621
Bunger AP, Lecampion B (2017) Four critical issues for successful hydraulic fracturing applications. Rock mechanics and engineering. https://doi.org/10.4324/9781315708119-22
Bunger AP, Jeffrey RG, Detournay E (2005) Application of scaling laws to laboratory-scale hydraulic fractures. In Alaska Rocks 2005, The 40th US Symposium on Rock Mechanics (USRMS). OnePetro.
Burridge R, Knopoff L (1964) Body force equivalents for seismic dislocations. Bull Seismol Soc Am 54(6A):1875–1888
Butt A, Hedayat A, Moradian O (2023) Laboratory investigation of hydraulic fracturing in granitic rocks using active and passive seismic monitoring. Geophys J Int 234(3):1752–1770
Cornet FH, Bérard T, Bourouis S (2007) How close to failure is a granite rock mass at a 5 km depth? Int J Rock Mech Min Sci 44(1):47–66. https://doi.org/10.1016/j.ijrmms.2006.04.008
Cuenot N, Dorbath C, Dorbath L (2008) Analysis of the microseismicity induced by fluid injections at the EGS site of Soultz-sous-Forêts (Alsace, France): implications for the characterization of the geothermal reservoir properties. Pure Appl Geophys 165(5):797–828. https://doi.org/10.1007/s00024-008-0335-7
Dai F, Xia K (2010) Loading rate dependence of tensile strength anisotropy of Barre granite. Pure Appl Geophys 167:1419–1432
Dai F, Xia KW (2013) Laboratory measurements of the rate dependence of the fracture toughness anisotropy of Barre granite. Int J Rock Mech Min Sci 60:57–65. https://doi.org/10.1016/j.ijrmms.2012.12.035
Dai F, Xia K, Zuo JP, Zhang R, Xu NW (2013) Static and dynamic flexural strength anisotropy of Barre granite. Rock Mech Rock Eng 46(6):1589–1602
Davidsen J, Goebel T, Kwiatek G, Stanchits S, Baró J, Dresen G (2021) What controls the presence and characteristics of aftershocks in rock fracture in the lab? J Geophys Res: Solid Earth 126(10):e2021JB022539
De Pater CJ, Cleary MP, Quinn TS, Barr DT, Johnson DE, Weijers L (1994a) Experimental verification of dimensional analysis for hydraulic fracturing. SPE Prod Facil 9(04):230–238. https://doi.org/10.2118/24994-PA
De Pater CJ, Weijers L, Savic M, Wolf KHAA, Van Den Hoek PJ, Barr DT (1994b) Experimental study of nonlinear effects in hydraulic fracture propagation (includes associated papers 29225 and 29687). SPE Prod Facil 9(04):239–246. https://doi.org/10.2118/25893-PA
Detournay E (2004) Propagation regimes of fluid-driven fractures in impermeable rocks. Int J Geomech 4(1):35–45. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:1(35)
Detournay E (2016) Mechanics of hydraulic fractures. Annu Rev Fluid Mech 48:311–339. https://doi.org/10.1146/annurev-fluid-010814-014736
Downie RC, Kronenberger E, Maxwell SC (2010). Using microseismic source parameters to evaluate the influence of faults on fracture treatments-a geophysical approach to interpretation. In SPE Annual Technical Conference and Exhibition. OnePetro. https://doi.org/10.2118/134772-MS
Eaton DW, Davidsen J, Pedersen PK, Boroumand N (2014) Breakdown of the Gutenberg-Richter relation for microearthquakes induced by hydraulic fracturing: influence of stratabound fractures. Geophys Prospect 62(4):806–818. https://doi.org/10.1111/1365-2478.12128
Fallahzadeh SH, Hossain MM, James Cornwell A, Rasouli V (2017) Near wellbore hydraulic fracture propagation from perforations in tight rocks: the roles of fracturing fluid viscosity and injection rate. Energies 10(3):359. https://doi.org/10.3390/en10030359
Frohlich C (2001) Display and quantitative assessment of distributions of earthquake focal mechanisms. Geophys J Int 144(2):300–308
Gehne S, Benson PM, Koor N, Dobson KJ, Enfield M, Barber A (2019) Seismo-mechanical response of anisotropic rocks under hydraulic fracture conditions: new experimental insights. J Geophys Res: Solid Earth 124(9):9562–9579
Gischig VS, Doetsch J, Maurer H, Krietsch H, Amann F, Evans KF, Giardini D (2018) On the link between stress field and small-scale hydraulic fracture growth in anisotropic rock derived from microseismicity. Solid Earth 9(1):39–61
Goodfellow SD, Nasseri MHB, Maxwell SC, Young RP (2015) Hydraulic fracture energy budget: insights from the laboratory. Geophys Res Lett 42(9):3179–3187. https://doi.org/10.1002/2015GL063093
Grigoli F, Cesca S, Rinaldi AP, Manconi A, Lopez-Comino JA, Clinton JF, Wiemer S (2018) The november 2017 M w 5.5 Pohang earthquake: a possible case of induced seismicity in South Korea. Science 360(6392):1003–1006
Gulia L, Wiemer S (2019) Real-time discrimination of earthquake foreshocks and aftershocks. Nature 574(7777):193–199. https://doi.org/10.1038/s41586-019-1606-4
Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34(4):185–188
Hajiabdolmajid V, Kaiser P, Martin CD (2003) Mobilised strength components in brittle failure of rock. Geotechnique 53(3):327–336
Hampton J, Frash L, Gutierrez M (2013) Investigation of laboratory hydraulic fracture source mechanisms using acoustic emission. In 47th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association.
Hampton J, Gutierrez M, Matzar L, Hu D, Frash L (2018) Acoustic emission characterization of microcracking in laboratory-scale hydraulic fracturing tests. J Rock Mech Geotech Eng 10(5):805–817. https://doi.org/10.1016/j.jrmge.2018.03.007
Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res: Solid Earth 84(B5):2348–2350
Hedayat A, Pyrak-Nolte LJ, Bobet A (2014) Precursors to the shear failure of rock discontinuities. Geophys Res Lett 41(15):5467–5475. https://doi.org/10.1002/2014GL060848
Henley RW, Ellis AJ (1983) Geothermal systems ancient and modern: a geochemical review. Earth Sci Rev 19(1):1–50
Herrmann M, Kraft T, Tormann T, Scarabello L, Wiemer S (2019) A consistent high-resolution catalog of induced seismicity in Basel based on matched filter detection and tailored post-processing. J Geophys Res: Solid Earth 124(8):8449–8477
Horálek J, Jechumtálová Z, Dorbath L, Šílený J (2010) Source mechanisms of micro-earthquakes induced in a fluid injection experiment at the HDR site Soultz-sous-Forêts (Alsace) in 2003 and their temporal and spatial variations. Geophys J Int 181(3):1547–1565
Hu L, Ghassemi A, Pritchett J, Garg S (2020) Characterization of laboratory-scale hydraulic fracturing for EGS. Geothermics 83:101706
Huang L, Liu J, Zhang F, Dontsov E, Damjanac B (2019) Exploring the influence of rock inherent heterogeneity and grain size on hydraulic fracturing using discrete element modeling. Int J Solids Struct 176:207–220
Hudson JA, Pearce RG, Rogers RM (1989) Source type plot for inversion of the moment tensor. J Geophys Res: Solid Earth 94(B1):765–774
Inui S, Ishida T, Nagaya Y, Nara Y, Chen Y, Chen Q (2014) AE monitoring of hydraulic fracturing experiments in granite blocks using supercritical CO2, water and viscous oil. In 48th US Rock Mechanics/Geomechanics Symposium. OnePetro.
Ishida T (2001) Acoustic emission monitoring of hydraulic fracturing in laboratory and field. Constr Build Mater 15(5–6):283–295. https://doi.org/10.1016/S0950-0618(00)00077-5
Ishida T, Chen Q, Mizuta Y, Roegiers JC (2004) Influence of fluid viscosity on the hydraulic fracturing mechanism. J Energy Resour Technol 126(3):190–200
Ishida T, Aoyagi K, Niwa T, Chen Y, Murata S, Chen Q, Nakayama Y (2012) Acoustic emission monitoring of hydraulic fracturing laboratory experiment with supercritical and liquid CO2. Geophys Res Lett. https://doi.org/10.1029/2012GL052788
Ishida T, Chen Y, Bennour Z, Yamashita H, Inui S, Nagaya Y, Nagano Y (2016) Features of CO2 fracturing deduced from acoustic emission and microscopy in laboratory experiments. J Geophys Res: Solid Earth 121(11):8080–8098. https://doi.org/10.1002/2016JB013365
Ishida T, Fujito W, Yamashita H, Naoi M, Fuji H, Suzuki K, Matsui H (2019) Crack expansion and fracturing mode of hydraulic refracturing from acoustic emission monitoring in a small-scale field experiment. Rock Mech Rock Eng 52(2):543–553. https://doi.org/10.1007/s00603-018-1697-5
Ishida T, Desaki S, Kishimoto Y, Naoi M, Fujii H (2021) Acoustic emission monitoring of hydraulic fracturing using carbon dioxide in a small-scale field experiment. Int J Rock Mech Min Sci 141:104712
Ito T, Igarashi A, Kato H, Ito H, Sano O (2006) Crucial effect of system compliance on the maximum stress estimation in the hydrofracturing method: theoretical considerations and field-test verification. Earth, Planets Space 58(8):963–971
Ito T, Satoh T, Kato H (2010) Deep rock stress measurement by hydraulic fracturing method taking account of system compliance effect. In ISRM International Symposium on In-Situ Rock Stress. OnePetro.
Jung R (2013) EGS—goodbye or back to the future. In ISRM International Conference for Effective and Sustainable Hydraulic Fracturing. OnePetro.
Knopoff L, Randall MJ (1970) The compensated linear-vector dipole: a possible mechanism for deep earthquakes. J Geophys Res 75(26):4957–4963
Kranzz RL, Frankel AD, Engelder T, Scholz CH (1979) The permeability of whole and jointed Barre granite. Int J Rock Mech Min Sci Geomech Abstr 16(4):225–234
Kurz JH, Grosse CU, Reinhardt HW (2005) Strategies for reliable automatic onset time picking of acoustic emissions and of ultrasound signals in concrete. Ultrasonics 43(7):538–546
Kwiatek G, Martínez-Garzón P, Bohnhoff M (2016) HybridMT: a MATLAB/shell environment package for seismic moment tensor inversion and refinement. Seismol Res Lett 87(4):964–976
Lecampion B, Desroches J, Jeffrey RG, Bunger AP (2017) Experiments versus theory for the initiation and propagation of radial hydraulic fractures in low-permeability materials. J Geophy Res: Solid Earth 122(2):1239–1263. https://doi.org/10.1002/2016JB013183
Lhomme T, Detournay E, Jeffrey RG (2005) Effect of fluid compressibility and borehole on the initiation and propagation of a tranverse hydraulic fracture. Strength, Fract Complex 3(2–4):149–162
Li BQ, Einstein HH (2019) Direct and microseismic observations of hydraulic fracturing in Barre granite and Opalinus clayshale. J Geophys Res: Solid Earth 124(11):11900–11916. https://doi.org/10.1029/2019JB018376
Li BQ, da Silva BG, Einstein H (2019) Laboratory hydraulic fracturing of granite: acoustic emission observations and interpretation. Eng Fract Mech 209:200–220
Li M, Zhang F, Zhuang L, Zhang X, Ranjith P (2020) Micromechanical analysis of hydraulic fracturing in the toughness-dominated regime: implications to supercritical carbon dioxide fracturing. Comput Geosci 24:1815–1831
Li BQ, Casanova M, Einstein HH (2023) Laboratory study of fracture initiation and propagation in Barre granite under fluid pressure at stress state close to failure. J Rock Mech Geotech Eng 15(3):538–550
Lockner D (1993) The role of acoustic emission in the study of rock fracture. Int J Rock Mech Min Sci Geomech Abstr 30(7):883–899. https://doi.org/10.1016/0148-9062(93)90041-B
Maeda N (1985) A method for reading and checking phase times in autoprocessing system of seismic wave data. Zisin 38:365–379
Martin CD, Chandler NA (1994) The progressive fracture of Lac du Bonnet granite. Int J Rock Mech Min Sci Geomech Abstr 31(6):643–659
Martínez-Garzón P, Kwiatek G, Bohnhoff M, Dresen G (2017) Volumetric components in the earthquake source related to fluid injection and stress state. Geophys Res Lett 44(2):800–809
Maxwell SC (2011) What does microseismicity tells us about hydraulic fractures? In SEG Technical Program Expanded Abstracts 2011. Society of Exploration Geophysicists. pp 1565–1569. https://doi.org/10.1190/1.3627501
Maxwell SC, Cipolla C (2011) What does microseismicity tell us about hydraulic fracturing? In SPE Annual Technical Conference and Exhibition. OnePetro. https://doi.org/10.2118/146932-MS
Maxwell SC, Jones M, Parker R, Miong S, Leaney S, Dorval D, Hammermaster K (2009a) Fault activation during hydraulic fracturing. In: SEG Technical Program Expanded Abstracts 2009. Society of Exploration Geophysicists. pp 1552–1556. https://doi.org/10.1190/1.3255145
Maxwell SC, Waltman CK, Warpinski NR, Mayerhofer MJ, Boroumand N (2009b) Imaging seismic deformation induced by hydraulic fracture complexity. SPE Reserv Eval Eng 12(01):48–52
Maxwell S, Goodfellow S, Lee B, Mack M, Young R (2016) Acoustic-emission geomechanics characterization of laboratory hydraulic fracturing. In 2016 SEG International Exposition and Annual Meeting. OnePetro.
McClure MW (2012) Modeling and characterization of hydraulic stimulation and induced seismicity in geothermal and shale gas reservoirs (Doctoral dissertation). Stanford University.
McClure MW, Horne RN (2014a) An investigation of stimulation mechanisms in enhanced geothermal systems. Int J Rock Mech Min Sci 72:242–260. https://doi.org/10.1016/j.ijrmms.2014.07.011
McClure MW, Horne RN (2014b) Correlations between formation properties and induced seismicity during high pressure injection into granitic rock. Eng Geol 175:74–80. https://doi.org/10.1016/j.enggeo.2014.03.015
Miller JT (2008) Crack coalescence in granite, Master's Thesis, Massachusetts Institute of Technology.
Nakamura Y, Hiraiwa S, Suzuki F, Matsui M (2016) High-pressure viscosity measurements of polyalphaorefins at elevated temperature. Tribol Online 11(2):444–449
Naoi M, Chen Y, Yamamoto K, Morishige Y, Imakita K, Tsutumi N, Kitamura S (2020) Tensile-dominant fractures observed in hydraulic fracturing laboratory experiment using eagle ford shale. Geophys J Int 222(2):769–780. https://doi.org/10.1093/gji/ggaa183
Nasseri MHB, Mohanty B (2008) Fracture toughness anisotropy in granitic rocks. Int J Rock Mech Min Sci 45(2):167–193
Nasseri MHB, Mohanty B, Young RP (2006) Fracture toughness measurements and acoustic emission activity in brittle rocks. Pure Appl Geophys 163(5–6):917–945. https://doi.org/10.1007/s00024-006-0064-8
Niu Z, Li BQ, Moradian O (2023) Moment tensor and stress inversion solutions of acoustic emissions during compression and tensile fracturing in crystalline rocks. J Rock Mech Geotech Eng. https://doi.org/10.1016/j.jrmge.2022.12.024
Nolen-Hoeksema RC, Ruff LJ (2001) Moment tensor inversion of microseisms from the B-sand propped hydrofracture, M-site. Colorado Tectonophys 336(1–4):163–181
Norbeck JH, McClure MW, Horne RN (2018) Field observations at the Fenton Hill enhanced geothermal system test site support mixed-mechanism stimulation. Geothermics 74:135–149. https://doi.org/10.1016/j.geothermics.2018.03.003
Nur A, Simmons G (1969) Stress-induced velocity anisotropy in rock: an experimental study. J Geophys Res 74(27):6667–6674
Ohno K, Ohtsu M (2010) Crack classification in concrete based on acoustic emission. Constr Build Mater 24(12):2339–2346
Ohtsu M (1991) Simplified moment tensor analysis and unified decomposition of acoustic emission source: application to in situ hydrofracturing test. J Geophys Res: Solid Earth 96(B4):6211–6221
Ohtsu M (1995) Acoustic emission theory for moment tensor analysis. Res Nondestr Eval 6(3):169–184. https://doi.org/10.1007/BF01606380
Olasolo P, Juárez MC, Morales MP, Liarte IA (2016) Enhanced geothermal systems (EGS): a review. Renew Sustain Energy Rev 56:133–144
Olsson R (1999) An estimation of the maximum b-value in the Gutenberg-Richter relation. J Geodyn 27(4–5):547–552. https://doi.org/10.1016/S0264-3707(98)00022-2
Pan PZ, Wu ZH, Yan F, Ji WW, Miao ST, Wang Z (2020) Effect of the intermediate principal stress on hydraulic fracturing in granite: an experimental study. Environ Earth Sci 79(1):10. https://doi.org/10.1007/s12665-019-8760-8
Rydelek PA, Sacks IS (1989) Testing the completeness of earthquake catalogues and the hypothesis of self-similarity. Nature 337(6204):251–253. https://doi.org/10.1038/337251a0
Sano O, Kudo Y, Mizuta Y (1992) Experimental determination of elastic constants of Oshima granite, Barre granite, and Chelmsford granite. J Geophy Res: Solid Earth 97(B3):3367–3379. https://doi.org/10.1029/91JB02934
Sarmadivaleh M (2012). Experimental and numerical study of interaction of a pre-existing natural interface and an induced hydraulic fracture (Doctoral dissertation, Curtin University).
Sarmadivaleh M, Joodi B, Nabipour A, Rasouli V (2013) Steps to conducting a valid hydraulic-fracturing laboratory test. APPEA J 53(1):347–354. https://doi.org/10.1071/AJ12029
Savic M, Cockram MJ, Ziolkowski AM (1993) Active ultrasonic monitoring of laboratory-scale hydraulic fracturing experiments: numerical modelling vs experiment. In offshore Europe. Pet Eng. https://doi.org/10.2118/26793-MS
Savitski AA, Detournay E (2002) Propagation of a fluid-driven penny-shaped fracture in an impermeable rock: asymptotic solutions. Int J Solids Struct 39(26):63116337. https://doi.org/10.1016/S0020-7683(02)00492-4
Schmelzer JW, Zanotto ED, Fokin VM (2005) Pressure dependence of viscosity. J Chem Phys 122(7):074511
Schmitt DR, Zoback MD (1992) Diminished pore pressure in low-porosity crystalline rock under tensional failure: apparent strengthening by dilatancy. J Geophys Res: Solid Earth 97(B1):273–288
Schoenball M, Ajo-Franklin JB, Blankenship D, Chai C, Chakravarty A, Dobson P, EGS Collab Team (2020) Creation of a mixed-mode fracture network at mesoscale through hydraulic fracturing and shear stimulation. J Geophys Res: Solid Earth 125(12):e2020JB019807
Schorlemmer D, Wiemer S, Wyss M (2005) Variations in earthquake-size distribution across different stress regimes. Nature 437(7058):539–542. https://doi.org/10.1038/nature04094
Selvadurai APS, Boulon MJ, Nguyen TS (2005) The permeability of an intact granite. Pure Appl Geophys 162(2):373–407
Shirole D, Walton G, Hedayat A (2020) Experimental investigation of multi-scale strain-field heterogeneity in rocks. Int J Rock Mech Min Sci 127:104212
Šílený J, Jechumtálová Z, Dorbath C (2014) Small scale earthquake mechanisms induced by fluid injection at the enhanced geothermal system reservoir Soultz (Alsace) in 2003 using alternative source models. Pure Appl Geophys 171:2783–2804
Sleeman R, Van Eck T (1999) Robust automatic P-phase picking: an on-line implementation in the analysis of broadband seismogram recordings. Phys Earth Planet Inter 113(1–4):265–275
Solberg P, Lockner D, Byerlee JD (1980) Hydraulic fracturing in granite under geothermal conditions. Int J Rock Mech Min Sci Geomech Abstr 17(1):25–33. https://doi.org/10.1016/0148-9062(80)90003-0
Stanchits S, Surdi A, Gathogo P, Edelman E, Suarez-Rivera R (2014) Onset of hydraulic fracture initiation monitored by acoustic emission and volumetric deformation measurements. Rock Mech Rock Eng 47(5):1521–1532. https://doi.org/10.1007/s00603-014-0584-y
Tanaka R, Naoi M, Chen Y, Yamamoto K, Imakita K, Tsutsumi N, Hyodo D (2021) Preparatory acoustic emission activity of hydraulic fracture in granite with various viscous fluids revealed by deep learning technique. Geophys J Int 226(1):493–510
Utsu T (1965) A method for determining the value of" b" in a formula log n= a-bm showing the magnitude-frequency relation for earthquakes. Geophys Bull Hokkaido Univ 13:99–103
Vavryčuk V (2001) Inversion for parameters of tensile earthquakes. J Geophys Res: Solid Earth 106(B8):16339–16355
Vavryčuk V (2011) Tensile earthquakes: theory, modeling, and inversion. J Geophys Res: Solid Earth 116:B12320. https://doi.org/10.1029/2011JB008770
Vavryčuk V (2015) Moment tensor decompositions revisited. J Seismolog 19:231–252
Villiger L, Gischig VS, Doetsch J, Krietsch H, Dutler NO, Jalali M, Wiemer S (2020) Influence of reservoir geology on seismic response during decameter-scale hydraulic stimulations in crystalline rock. Solid Earth 11(2):627–655. https://doi.org/10.5194/se-11-627-2020
Warpinski N (2009) Microseismic monitoring: inside and out. J Petrol Technol 61(11):80–85. https://doi.org/10.2118/118537-JPT
Warpinski NR, Du J, Zimmer U (2012) Measurements of hydraulic-fracture-induced seismicity in gas shales. SPE Prod Oper 27(03):240–252
Wessels S, Kratz M, De La Pena A (2011) Identifying fault activation during hydraulic stimulation in the Barnett shale: source mechanisms, b values, and energy release analyses of microseismicity. SEG technical program expanded abstracts 2011. Society of Exploration Geophysicists, Houston, pp 1463–1467. https://doi.org/10.1190/1.3627478
Wiemer S, Wyss M (2000) Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States, and Japan. Bull Seismol Soc Am 90(4):859–869. https://doi.org/10.1785/0119990114
Woessner J, Wiemer S (2005) Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and its uncertainty. Bull Seismol Soc Am 95(2):684–698. https://doi.org/10.1785/0120040007
Wu R, Selvadurai PA, Chen C, Moradian O (2021) Revisiting piezoelectric sensor calibration methods using elastodynamic body waves. J Nondestr Eval 40(3):1–19
Xia K, Nasseri MHB, Mohanty B, Lu F, Chen R, Luo SN (2008) Effects of microstructures on dynamic compression of Barre granite. Int J Rock Mech Min Sci 45(6):879–887
Xie L, Min KB, Song Y (2015) Observations of hydraulic stimulations in seven enhanced geothermal system projects. Renew Energy 79:56–65. https://doi.org/10.1016/j.renene.2014.07.044
Zafar S, Hedayat A, Moradian O (2022) Evolution of tensile and shear cracking in crystalline rocks under compression. Theoret Appl Fract Mech 118:103254
Zang A, Christian Wagner F, Stanchits S, Dresen G, Andresen R, Haidekker MA (1998) Source analysis of acoustic emissions in Aue granite cores under symmetric and asymmetric compressive loads. Geophys J Int 135(3):1113–1130. https://doi.org/10.1046/j.1365-246X.1998.00706.x
Zhao P, Kühn D, Oye V, Cesca S (2014) Evidence for tensile faulting deduced from full waveform moment tensor inversion during the stimulation of the Basel enhanced geothermal system. Geothermics 52:74–83. https://doi.org/10.1016/j.geothermics.2014.01.003
Zhuang L, Kim KY, Jung SG, Diaz M, Min KB (2019a) Effect of water infiltration, injection rate and anisotropy on hydraulic fracturing behavior of granite. Rock Mech Rock Eng 52(2):575–589. https://doi.org/10.1007/s00603-018-1431-3
Zhuang L, Kim KY, Jung SG, Diaz M, Min KB, Zang A et al (2019b) Cyclic hydraulic fracturing of pocheon granite cores and its impact on breakdown pressure, acoustic emission amplitudes and injectivity. Int J Rock Mech Min Sci 122:104065. https://doi.org/10.1016/j.ijrmms.2019.104065