Microscopic versus endoscopic transsphenoidal surgery in the Leiden cohort treated for Cushing’s disease: surgical outcome, mortality, and complications
Tóm tắt
First-choice treatment for Cushing’s disease is transsphenoidal adenomectomy. Since its introduction in the 1970s, many centers have now switched from microscopic to endoscopic surgery. We compared both techniques for the treatment of Cushing’s disease at the Leiden University Medical Center, a European reference center for pituitary diseases. Cohort study with inclusion and follow-up of consecutive Cushing’s disease patients primarily treated by transsphenoidal surgery at the Leiden University Medical Center between 1978 and 2016. We compared remission rates (primary endpoint), mortality, and complications between microscopic (performed up to 2005) and endoscopic (performed from 2003 onwards) surgery. Subgroup analyses were performed by tumor size, surgical experience, and preoperative imaging techniques. Additionally, surgeons’ intraoperative findings regarding presence and removal of the adenoma were related to surgical outcome. Of 137 included patients, 87 were treated microscopically and 50 endoscopically. Three months after microscopic surgery, 74 patients (86%) were in remission. Five-year recurrence-free survival was 89% (95% confidence interval [CI]: 82–96%), and ten-year recurrence free survival was 84% (95% CI: 75–93%). After endoscopic surgery, 39 patients (83%) were in remission. Both five-year and ten-year recurrence-free survival were 71% (95% CI: 55–87%). Hazard ratio for recurrence was 0.47 (95% CI: 0.19–1.14), and for mortality 2.79 (95% CI: 0.35–22.51), for microscopic versus endoscopic surgery. No learning curve was found for endoscopy, nor an influence of preoperative imaging technique for microscopy. In addition, we did not find a clear relation between the surgeons’ intraoperative findings and surgical outcomes. This study did not identify a clear advantage of microscopic or endoscopic transsphenoidal surgery for the treatment of Cushing’s disease based on clinical outcome. The transition to endoscopic surgery at our center was not accompanied by transient worsening of outcomes, which may be reassuring for those considering transitioning.
Tài liệu tham khảo
Lindholm J, Juul S, Jorgensen JO, Astrup J, Bjerre P, Feldt-Rasmussen U, et al. Incidence and late prognosis of cushing's syndrome: a population-based study. J Clin Endocrinol Metab. 2001;86(1):117–23.
Fernandez-Rodriguez E, Stewart PM, Cooper MS. The pituitary-adrenal axis and body composition. Pituitary. 2009;12(2):105–15.
Pereira AM, Tiemensma J, Romijn JA. Neuropsychiatric disorders in Cushing's syndrome. Neuroendocrinology. 2010;92(Suppl 1):65–70.
Hofmann BM, Hlavac M, Martinez R, Buchfelder M, Muller OA, Fahlbusch R. Long-term results after microsurgery for Cushing disease: experience with 426 primary operations over 35 years. J Neurosurg. 2008;108(1):9–18.
Nieman LK, Biller BM, Findling JW, Murad MH, Newell-Price J, Savage MO, et al. Treatment of Cushing's syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2015;100(8):2807–31.
Van Haalen FM, Broersen LHA, Jorgensen JO, Pereira AM, Dekkers OM. Management of endocrine disease: mortality remains increased in Cushing's disease despite biochemical remission: a systematic review and meta-analysis. Eur J Endocrinol. 2015;172(4):R143–R9.
Jankowski R, Auque J, Simon C, Marchal JC, Hepner H, Wayoff M. Endoscopic pituitary tumor surgery. Laryngoscope. 1992;102(2):198–202.
Jho HD, Carrau RL. Endoscopic endonasal transsphenoidal surgery: experience with 50 patients. J Neurosurg. 1997;87(1):44–51.
Alahmadi H, Cusimano MD, Woo K, Mohammed AA, Goguen J, Smyth HS, et al. Impact of technique on Cushing disease outcome using strict remission criteria. Can J Neurol Sci. 2013;40(3):334–41.
Atkinson JL, Young WF Jr, Meyer FB, Davis DH, Nippoldt TB, Erickson D, et al. Sublabial transseptal vs transnasal combined endoscopic microsurgery in patients with Cushing disease and MRI-depicted microadenomas. Mayo Clin Proc. 2008;83(5):550–3.
Cheng RX, Tian HL, Gao WW, Li ZQ. A comparison between endoscopic trans-sphenoidal surgery and traditional trans-sphenoidal microsurgery for functioning pituitary adenomas. The Journal of international medical research. 2011;39(5):1985–93.
D'Haens J, Van Rompaey K, Stadnik T, Haentjens P, Poppe K, Velkeniers B. Fully endoscopic transsphenoidal surgery for functioning pituitary adenomas: a retrospective comparison with traditional transsphenoidal microsurgery in the same institution. Surg Neurol. 2009;72(4):336–40.
Ammirati M, Wei L, Ciric I. Short-term outcome of endoscopic versus microscopic pituitary adenoma surgery: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2013;84(8):843–9.
Goudakos JK, Markou KD, Georgalas C. Endoscopic versus microscopic trans-sphenoidal pituitary surgery: a systematic review and meta-analysis. Clin Otolaryngol. 2011;36(3):212–20.
Esquenazi Y, Essayed WI, Singh H, Mauer E, Ahmed M, Christos PJ, et al. Endoscopic Endonasal versus microscopic Transsphenoidal surgery for recurrent and/or residual pituitary adenomas. World Neurosurg. 2017;101:186–95.
Jakimovski D, Bonci G, Attia M, Shao H, Hofstetter C, Tsiouris AJ, et al. Incidence and significance of intraoperative cerebrospinal fluid leak in endoscopic pituitary surgery using intrathecal fluorescein. World Neurosurg. 2014;82(3–4):e513–23.
Bokhari AR, Davies MA, Diamond T. Endoscopic transsphenoidal pituitary surgery: a single surgeon experience and the learning curve. Br J Neurosurg. 2013;27(1):44–9.
Leach P, Abou-Zeid AH, Kearney T, Davis J, Trainer PJ, Gnanalingham KK. Endoscopic transsphenoidal pituitary surgery: evidence of an operative learning curve. Neurosurgery. 2010;67(5):1205–12.
Chi F, Wang Y, Lin Y, Ge J, Qiu Y, Guo L. A learning curve of endoscopic transsphenoidal surgery for pituitary adenoma. The Journal of craniofacial surgery. 2013;24(6):2064–7.
Qureshi T, Chaus F, Fogg L, Dasgupta M, Straus D, Byrne RW. Learning curve for the transsphenoidal endoscopic endonasal approach to pituitary tumors. Br J Neurosurg. 2016;30(6):637–42.
Nieman LK, Biller BM, Findling JW, Newell-Price J, Savage MO, Stewart PM, et al. The diagnosis of Cushing's syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2008;93(5):1526–40.
Dinsen S, Baslund B, Klose M, Rasmussen AK, Friis-Hansen L, Hilsted L, et al. Why glucocorticoid withdrawal may sometimes be as dangerous as the treatment itself. Eur J Intern Med. 2013;24(8):714–20.
Sonino N, Boscaro M, Fallo F, Fava GA. A clinical index for rating severity in Cushing's syndrome. Psychother Psychosom. 2000;69(4):216–20.
Hernan MA, Hernandez-Diaz S, Robins JM. A structural approach to selection bias. Epidemiology (Cambridge, Mass). 2004;15(5):615–25.
von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies. Int J Surge (London, England). 2014;12(12):1495–9.
LHA B, Biermasz NR, van Furth WR, de Vries F, MJT V, Dekkers OM, et al. Endoscopic vs. microscopic transsphenoidal surgery for Cushing's disease: a systematic review and meta-analysis. Pituitary. 2018;21(5):524-34.