Microscopic theory of hardness and design of novel superhard crystals

Yongjun Tian1, Bo Xu1, Zhisheng Zhao1
1State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Réaumur RAF de, 1956

Haines, 2001, Synthesis and design of superhard materials, Annu Rev Mater Res, 31, 1, 10.1146/annurev.matsci.31.1.1

Brazhkin, 2004, What does “harder than diamond” mean?, Nat Mater, 3, 576, 10.1038/nmat1196

Brazhkin, 2002, Harder than diamond: dreams and reality, Philos Mag A, 82, 231, 10.1080/01418610208239596

Nix, 1998, Indentation size effects in crystalline materials: a law for strain gradient plasticity, J Mech Phys Solids, 46, 411, 10.1016/S0022-5096(97)00086-0

Vepřek, 2000, Nanostructured Superhard Materials, 109

Shul'zhenko, 2010, Novel hybrid ultrahard material, J Superhard Mater, 32, 293, 10.3103/S1063457610050011

Gilman, 2009

Solozhenko, 2005, Synthesis of superhard materials, Mater Today, 8, 44, 10.1016/S1369-7021(05)71159-7

Sung, 1996, Carbon nitride and other speculative superhard materials, Mater Chem Phys, 43, 1, 10.1016/0254-0584(95)01607-V

Zhao, 2002, Superhard B-C-N materials synthesized in nanostructured bulks, J Mater Res, 17, 3139, 10.1557/JMR.2002.0454

Solozhenko, 2001, Synthesis of superhard cubic BC2N, Appl Phys Lett, 78, 1385, 10.1063/1.1337623

Solozhenko, 2009, Ultimate metastable solubility of boron in diamond: synthesis of superhard diamondlike BC5, Phys Rev Lett, 102, 015506, 10.1103/PhysRevLett.102.015506

Solozhenko, 2008, On the hardness of a new boron phase, orthorhombic gamma-B-28, J Superhard Mater, 30, 428, 10.3103/S1063457608060117

He, 2002, Boron suboxide: As hard as cubic boron nitride, Appl Phys Lett, 81, 643, 10.1063/1.1494860

Gu, 2008, Transition metal borides: Superhard versus ultra-incompressihle, Adv Mater, 20, 3620, 10.1002/adma.200703025

Chung, 2007, Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure, Science, 316, 436, 10.1126/science.1139322

Crowhurst, 2006, Synthesis and characterization of the nitrides of platinum and iridium, Science, 311, 1275, 10.1126/science.1121813

Cumberland, 2005, Osmium diboride, an ultra-incompressible, hard material, J Am Chem Soc, 127, 7264, 10.1021/ja043806y

Ono, 2005, A high-pressure and high-temperature synthesis of platinum carbide, Solid State Commun, 133, 55, 10.1016/j.ssc.2004.09.048

Qin, 2008, Is rhenium diboride a superhard material?, Adv Mater, 20, 4780, 10.1002/adma.200801471

Young, 2006, Synthesis of novel transition metal nitrides IrN2 and OsN2, Phys Rev Lett, 96, 155501, 10.1103/PhysRevLett.96.155501

Dubrovinskaia, 2007, Comment on “Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure”, Science, 318, 1550-1550, 10.1126/science.1147650

Ceder, 1998, Computational materials science – predicting properties from scratch, Science, 280, 1099, 10.1126/science.280.5366.1099

Li, 2010, Predicting new superhard phases, J Superhard Mater, 32, 192, 10.3103/S1063457610030056

Gilman, 1973, Hardness – a strength microprobe

Liu, 1989, Prediction of new low compressibility solids, Science, 245, 841, 10.1126/science.245.4920.841

Teter, 1998, Computational alchemy: the search for new superhard materials, MRS Bull, 23, 22, 10.1557/S0883769400031420

Levine, 2009, Advancements in the search for superhard ultra-incompressible metal borides, Adv Funct Mater, 19, 3519, 10.1002/adfm.200901257

Chen, 2011, Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics, 19, 1275, 10.1016/j.intermet.2011.03.026

Pugh, 1954, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos Mag, 45, 823, 10.1080/14786440808520496

Guo, 2008, Hardness of covalent compounds: roles of metallic component and d valence electrons, J Appl Phys, 104, 023503, 10.1063/1.2956594

He, 2005, Ionicities of boron–boron bonds in B12 icosahedra, Phys Rev Lett, 94, 015504, 10.1103/PhysRevLett.94.015504

Gao, 2003, Hardness of covalent crystals, Phys Rev Lett, 91, 015502, 10.1103/PhysRevLett.91.015502

Li, 2008, Electronegativity identification of novel superhard materials, Phys Rev Lett, 100, 235504, 10.1103/PhysRevLett.100.235504

Simunek, 2007, How to estimate hardness of crystals on a pocket calculator, Phys Rev B, 75, 172108, 10.1103/PhysRevB.75.172108

Simunek, 2006, Hardness of covalent and ionic crystals: first-principle calculations, Phys Rev Lett, 96, 085501, 10.1103/PhysRevLett.96.085501

Kaner, 2005, Materials science – designing superhard materials, Science, 308, 1268, 10.1126/science.1109830

Tse, 2010, Intrinsic hardness of crystalline solids, J Superhard Mater, 32, 177, 10.3103/S1063457610030044

Gilman, 1975, Flow of covalent solids at low-temperatures, J Appl Phys, 46, 5110, 10.1063/1.321567

Phillips, 1970, Ionicity of chemical bond in crystals, Rev Mod Phys, 42, 317, 10.1103/RevModPhys.42.317

Siethoff, 2000, Homopolar band gap and thermal activation parameters of plasticity of diamond and zinc-blende semiconductors, J Appl Phys, 87, 3301, 10.1063/1.372340

Pauling, 1960

Liu, 2011, Superhard polymorphs of diamond-like BC7, Solid State Commun, 151, 716, 10.1016/j.ssc.2011.02.013

Liu, 2011, Superhard and superconductive polymorphs of diamond-like BC3, Phys Lett A, 375, 771, 10.1016/j.physleta.2010.12.034

Li, 2011, Superhard phases of B2O: an isoelectronic compound of diamond, Diamond Relat Mater, 20, 501, 10.1016/j.diamond.2011.01.035

Li, 2010, Superhard and superconducting structures of BC5, J Appl Phys, 108, 023507, 10.1063/1.3452374

Fan, 2009, A first-principle study on the structure, stability and hardness of cubic BC2N, Diamond Relat Mater, 18, 1278, 10.1016/j.diamond.2009.05.003

Guo, 2007, Theoretical hardness of the cubic BC2N, Diamond Relat Mater, 16, 526, 10.1016/j.diamond.2006.10.009

Li, 2011, B2CO: a potential superhard material in the B-C-O system, EPL, 95, 66006, 10.1209/0295-5075/95/66006

Li, 2009, First-principle calculation on structures and properties of diamond-like B3C10N3 compound, J Alloys Compd, 481, 855, 10.1016/j.jallcom.2009.03.130

Zhao, 2010, Bulk Re2C: crystal structure, hardness, and ultra-incompressibility, Cryst Growth Des, 10, 5024, 10.1021/cg100659g

Wang, 2011, Pressure-induced structural transition of OsN2 and effect of metallic bonding on its hardness, EPL, 95, 66005, 10.1209/0295-5075/95/66005

Shao, 2011, Prediction of a low-dense BC2N phase, Chin Phys Lett, 28, 057101, 10.1088/0256-307X/28/5/057101

Wang, 2010, Design of superhard ternary compounds under high pressure: SiC2N4 and Si2CN4, J Phys Chem C, 114, 8609, 10.1021/jp100990b

Liu, 2007, Comment on “Hardness of covalent and ionic crystals: first-principle calculations”, Phys Rev Lett, 98, 109601, 10.1103/PhysRevLett.98.109601

Simunek, 2007, Simunek and Vackar reply, Phys Rev Lett, 98, 109602

Li, 2009, Hardness of materials: studies at levels from atoms to crystals, Chin Sci Bull, 54, 131, 10.1007/s11434-008-0550-8

Li, 2008, Electronegativities of elements in covalent crystals, J Phys Chem A, 112, 7894, 10.1021/jp8012738

Clerc, 1998, Mechanical hardness: a semiempirical theory based on screened electrostatics and elastic shear, J Phys Chem Solids, 59, 1071, 10.1016/S0022-3697(97)00251-5

Simunek, 2009, Anisotropy of hardness from first principles: the cases of ReB2 and OsB2, Phys Rev B, 80, 060103, 10.1103/PhysRevB.80.060103

Lyakhov, 2011, Evolutionary search for superhard materials: methodology and applications to forms of carbon and TiO2, Phys Rev B, 84, 092103, 10.1103/PhysRevB.84.092103

Oganov, 2011, How evolutionary crystal structure prediction works and why, Acc Chem Res, 44, 227, 10.1021/ar1001318

Grimvall, 1999

Martin, 2004

Oganov, 2009, Boron: a hunt for superhard polymorphs, J Superhard Mater, 31, 285, 10.3103/S1063457609050013

Solozhenko, 2002, Synthesis of novel superhard phases in the B-C-N system, High Pressure Res, 22, 519, 10.1080/08957950212439

Xu, 2011, Prediction of a superconductive superhard material: diamond-like BC7, J Appl Phys, 110, 013501, 10.1063/1.3601349

Calandra, 2008, High-Tc superconductivity in superhard diamondlike BC5, Phys Rev Lett, 101, 016401, 10.1103/PhysRevLett.101.016401

Zinin, 2007, Raman spectroscopy of the BC3 phase obtained under high pressure and high temperature, J Raman Spectrosc, 38, 1362, 10.1002/jrs.1776

Ekimov, 2004, Superconductivity in diamond, Nature, 428, 542, 10.1038/nature02449

Zhao, 2011, Three dimensional carbon-nanotube polymers, ACS Nano, 5, 7226, 10.1021/nn202053t

Mohammadi, 2011, Tungsten tetraboride, an inexpensive superhard material, Proc Natl Acad Sci U S A, 108, 10958, 10.1073/pnas.1102636108

Riedel, 1994, Novel ultrahard materials, Adv Mater, 6, 549, 10.1002/adma.19940060705

Ivanovskii, 2012, Mechanical and electronic properties of diborides of transition 3d–5d metals from first principles: toward search of novel ultra-incompressible and superhard materials, Prog Mater Sci, 57, 184, 10.1016/j.pmatsci.2011.05.004

Kurakevych, 2009, Superhard phases of simple substances and binary compounds of the B-C-N-O system: from diamond to the latest results (a Review), J Superhard Mater, 31, 139, 10.3103/S1063457609030010

Hu, 2006, First-principles studies of structural and electronic properties of hexagonal BC5, Phys Rev B, 73, 214116, 10.1103/PhysRevB.73.214116

Guo, 2007, First-principles investigation of dense B4C3, J Phys Chem C, 111, 13679, 10.1021/jp074190c

Jansson, 1985, Chemical vapour deposition of boron carbides in the temperature range 1300–1500 K and at a reduced pressure, Thin Solid Films, 124, 101, 10.1016/0040-6090(85)90251-2

Guo, 2006, Bond ionicities and hardness of B13C2-like structured ByX crystals (X=C, N, O, P, As), Phys Rev B, 73, 104115, 10.1103/PhysRevB.73.104115

Liu, 2006, Prediction of a sandwichlike conducting superhard boron carbide: first-principles calculations, Phys Rev B, 73, 172101, 10.1103/PhysRevB.73.172101

Yang, 2007, Diamond-like BC3 as a superhard conductor identified by ideal strength calculations, J Phys Condens Matter, 19, 346223, 10.1088/0953-8984/19/34/346223

Zinin PV, Jia R, Acosta T, Ming LC, Ishii H, Hellebrand E. Unpublished data.

Liang, 2009, Superhardness, stability, and metallicity of diamondlike BC5: density functional calculations, Phys Rev B, 80, 113401, 10.1103/PhysRevB.80.113401

Yao, 2009, Crystal and electronic structure of superhard BC5: first-principles structural optimizations, Phys Rev B, 80, 094106, 10.1103/PhysRevB.80.094106

Jiang, 2009, Superhard diamondlike BC5: a first-principles investigation, Phys Rev B, 80, 184101, 10.1103/PhysRevB.80.184101

Solozhenko, 2004, Synthesis of bulk superhard semiconducting B–C material, Appl Phys Lett, 85, 1508, 10.1063/1.1786363

Xu, 2010, Prediction of a three-dimensional conductive superhard material: diamond-like BC2, J Phys Chem C, 114, 22688, 10.1021/jp106926g

Dong, 2011, Superconductive superhard phase of BC7: predicted via ab initio calculations, Diamond Relat Mater, 20, 454, 10.1016/j.diamond.2011.01.034

Lowther, 2005, Potential super-hard phases and the stability of diamond-like boron–carbon structures, J Phys Condens Matter, 17, 3221, 10.1088/0953-8984/17/21/016

Ming, 2010, Synthesis of dense BCx phases under high-pressure and high-temperature, J Phys Conf Ser, 215, 012135, 10.1088/1742-6596/215/1/012135

Nkambule, 2010, Crystalline and random “diamond-like” boron–carbon structures, Solid State Commun, 150, 133, 10.1016/j.ssc.2009.09.041

Zhuang, 2010, Stability and mechanical properties of BCx crystals: the role of B–B bonds and boron concentration, J Phys Condens Matter, 22, 215401, 10.1088/0953-8984/22/21/215401

Wang, 2004, A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes, Proc Natl Acad Sci U S A, 101, 13699, 10.1073/pnas.0405877101

Ivanovskaya, 2010, Simulation of novel superhard carbon materials based on fullerenes and nanotubes, J Superhard Mater, 32, 67, 10.3103/S1063457610020012

Li, 2009, Superhard monoclinic polymorph of carbon, Phys Rev Lett, 102, 175506, 10.1103/PhysRevLett.102.175506

Sheng, 2011, T-carbon: a novel carbon allotrope, Phys Rev Lett, 106, 155703, 10.1103/PhysRevLett.106.155703

Umemoto, 2010, Body-centered tetragonal C4: a viable sp3 carbon allotrope, Phys Rev Lett, 104, 125504, 10.1103/PhysRevLett.104.125504

Zhou, 2010, Ab initio study of the formation of transparent carbon under pressure, Phys Rev B, 82, 134126, 10.1103/PhysRevB.82.134126

Zhu, 2011, Denser than diamond: Ab initio search for superdense carbon allotropes, Phys Rev B, 83, 193410, 10.1103/PhysRevB.83.193410

Mao, 2003, Bonding changes in compressed superhard graphite, Science, 302, 425, 10.1126/science.1089713

Wang, 2011, Low-temperature phase transformation from graphite to sp3 orthorhombic carbon, Phys Rev Lett, 106, 075501, 10.1103/PhysRevLett.106.075501

Zhao, 2011, Novel superhard carbon: C-centered orthorhombic C8, Phys Rev Lett, 107, 215502, 10.1103/PhysRevLett.107.215502

Ruoff, 1991, Is C60 stiffer than diamond?, Nature, 350, 663, 10.1038/350663b0

Ruoff, 1991, The bulk modulus of C60 molecules and crystals: a molecular mechanics approach, Appl Phys Lett, 59, 1553, 10.1063/1.106280

Brazhkin, 1998, Mechanical properties of the 3D polymerized, sp2-sp3 amorphous, and diamond-plus-graphite nanocomposite carbon phases prepared from C60 under high pressure, J Appl Phys, 84, 219, 10.1063/1.368021

Burgos, 2000, New superhard phases for three-dimensional C60-based fullerites, Phys Rev Lett, 85, 2328, 10.1103/PhysRevLett.85.2328

Yamanaka, 2006, Electron conductive three-dimensional polymer of cuboidal C60, Phys Rev Lett, 96, 076602, 10.1103/PhysRevLett.96.076602

Okada, 1999, New metallic crystalline carbon: three dimensionally polymerized C60 fullerite, Phys Rev Lett, 83, 1986, 10.1103/PhysRevLett.83.1986

Braga, 2007, Molecular dynamics simulation of single wall carbon nanotubes polymerization under compression, J Comput Chem, 28, 1724, 10.1002/jcc.20684

Chernozatonskii, 2002, Crystals of covalently bonded carbon nanotubes: energetics and electronic structures, Phys Rev B, 65, 241404, 10.1103/PhysRevB.65.241404

Chernozatonskii, 1998, Polymerized nanotube structures – new zeolites?, Chem Phys Lett, 297, 257, 10.1016/S0009-2614(98)01100-2

Gilman, 2006, Design of hard crystals, Int J Refract Met Hard Mater, 24, 1, 10.1016/j.ijrmhm.2005.05.015

Hebbache, 2006, A new superhard material: osmium diboride OsB2, Solid State Commun, 139, 227, 10.1016/j.ssc.2006.05.041

Gregoryanz, 2004, Synthesis and characterization of a binary noble metal nitride, Nat Mater, 3, 294, 10.1038/nmat1115

Soignard, 2003, High-pressure synthesis and study of low-compressibility molybdenum nitride (MoN and MoN1-x) phases, Phys Rev B, 68, 132101, 10.1103/PhysRevB.68.132101

Friedrich, 2010, Novel rhenium nitrides, Phys Rev Lett, 105, 085504, 10.1103/PhysRevLett.105.085504

Zerr, 2003, Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure, Nat Mater, 2, 185, 10.1038/nmat836

Zhao, 2010, Prediction of a conducting hard ductile cubic IrC, Phys Status Solidi RRL, 4, 230, 10.1002/pssr.201004282

Zhao, 2011, Superconducting ultraincompressible hard cubic Re4C, Comput Mater Sci, 50, 1592, 10.1016/j.commatsci.2010.11.028

Zhao, 2010, Semiconducting superhard ruthenium monocarbide, J Phys Chem C, 114, 9961, 10.1021/jp1000896

Soignard, 2007, Compressibility measurements and phonon spectra of hexagonal transition-metal nitrides at high pressure: ε-TaN, δ-MoN, and Cr2N, Phys Rev B, 75, 014104, 10.1103/PhysRevB.75.014104

Zerr, 2006, Recent advances in new hard high-pressure nitrides, Adv Mater, 18, 2933, 10.1002/adma.200501872

Chen, 2005, Hard superconducting nitrides, Proc Natl Acad Sci U S A, 102, 3198, 10.1073/pnas.0500174102

Guo, 2008, Structure and mechanical properties of osmium carbide: first-principles calculations, Appl Phys Lett, 93, 041904, 10.1063/1.2964179

Jhi, 1999, Electronic mechanism of hardness enhancement in transition-metal carbonitrides, Nature, 399, 132, 10.1038/20148

Jhi, 2001, Vacancy hardening and softening in transition metal carbides and nitrides, Phys Rev Lett, 86, 3348, 10.1103/PhysRevLett.86.3348

Jhi, 2001, Mechanical instability and ideal shear strength of transition metal carbides and nitrides, Phys Rev Lett, 87, 075503, 10.1103/PhysRevLett.87.075503

Tsetseris, 2007, Structure and interaction of point defects in transition-metal nitrides, Phys Rev B, 76, 224107, 10.1103/PhysRevB.76.224107

Zhang, 2011, Thermodynamic stability and unusual strength of ultra-incompressible rhenium nitrides, Phys Rev B, 83, 060101, 10.1103/PhysRevB.83.060101

Li, 2011, Crystal structures, mechanical and electronic properties of tantalum monocarbide and mononitride, J Superhard Mater, 33, 173, 10.3103/S1063457611030051

Rabah, 2010, Prediction of stabilities phase and elastic properties of palladium carbide, Comput Mater Sci, 48, 556, 10.1016/j.commatsci.2010.02.023

Yang, 2009, First-principles calculations of mechanical properties of TiC and TiN, J Alloys Compd, 485, 542, 10.1016/j.jallcom.2009.06.023

Luo K, Zhao ZS, Wang QQ, Xu B, He JL, Tian YJ. Unpublished data.

Friedrich, 2011, Synthesis of binary transition metal nitrides, carbides and borides from the elements in the laser-heated diamond anvil cell and their structure-property relations, Materials, 4, 1648, 10.3390/ma4101648

Wen, 2011, Body-centered tetragonal B2N2: a novel sp3 bonding boron nitride polymorph, Phys Chem Chem Phys, 13, 14565, 10.1039/c1cp20435a

Zhao, 2005, Structural evolution of turbostratic carbon nitride after being treated with a pulse discharge, Diamond Relat Mater, 14, 1700, 10.1016/j.diamond.2005.06.017

Zhao, 2005, Turbostratic carbon nitride prepared by pyrolysis of melamine, J Mater Sci, 40, 2645, 10.1007/s10853-005-2096-3

Zhao, 2008, Large-scale synthesis of nitrogen-rich carbon nitride microfibers by using graphitic carbon nitride as precursor, Adv Mater, 20, 1777, 10.1002/adma.200702230

He, 2006, Predicting hardness of dense C3N4 polymorphs, Appl Phys Lett, 88, 101906, 10.1063/1.2182109

Wang, 2001, Cubic-C3N4 nanoparticles synthesized in CNx/TiNx multilayer films, Chem Phys Lett, 334, 7, 10.1016/S0009-2614(00)01251-3

Li, 2008, Synthesis of semimetallic BC3.3N with orthorhombic structure at high pressure and temperature, Cryst Growth Des, 8, 2096, 10.1021/cg701206a

Zhou, 2009, A tetragonal phase of superhard BC2N, J Appl Phys, 105, 093521, 10.1063/1.3117521

Luo, 2008, Refined crystal structure and mechanical properties of superhard BC4N crystal: first-principles calculations, J Phys Chem C, 112, 9516, 10.1021/jp801530z

Luo, 2007, Body-centered superhard BC2N phases from first principles, Phys Rev B, 76, 094103, 10.1103/PhysRevB.76.094103

Luo, 2007, First-principles study of wurtzite BC2N, Phys Rev B, 76, 092107, 10.1103/PhysRevB.76.092107

Luo, 2007, Ground-state properties and hardness of high density BC6N phases originating from diamond structure, J Appl Phys, 101, 083505, 10.1063/1.2723866

Sun, 2006, Chalcopyrite polymorph for superhard BC2N, Appl Phys Lett, 89, 151911, 10.1063/1.2361267

He, 2001, Orthorhombic B2CN crystal synthesized by high pressure and temperature, Chem Phys Lett, 340, 431, 10.1016/S0009-2614(01)00400-6

Du, 2009, Hardness of α- and β-Si3-nCnN4 (n=0, 1, 2, 3) crystals, Diamond Relat Mater, 18, 72, 10.1016/j.diamond.2008.09.025

Oganov, 2009, Ionic high-pressure form of elemental boron, Nature, 457, 863, 10.1038/nature07736

Solozhenko, 2008, New boron subnitride B13N2: HP-HT synthesis, structure and equation of state, J Phys Conf Ser, 121, 062001, 10.1088/1742-6596/121/6/062001

Hubert, 1998, High-pressure, high-temperature synthesis and characterization of boron suboxide (B6O), Chem Mater, 10, 1530, 10.1021/cm970433+

Teter, 1996, Low-compressibility carbon nitrides, Science, 271, 53, 10.1126/science.271.5245.53

Argon, 2008

Siegel, 1995, Mechanical properties of nanophase metals, Nanostruct Mater, 6, 205, 10.1016/0965-9773(95)00044-5

Yip, 2004, Nanocrystalline metals: mapping plasticity, Nat Mater, 3, 11, 10.1038/nmat1053

Irifune, 2003, Materials – ultrahard polycrystalline diamond from graphite, Nature, 421, 599, 10.1038/421599b

Dubrovinskaia, 2007, Superhard nanocomposite of dense polymorphs of boron nitride: noncarbon material has reached diamond hardness, Appl Phys Lett, 90, 101912, 10.1063/1.2711277

Vepřek, 1995, A concept for the design of novel superhard coatings, Thin Solid Films, 268, 64, 10.1016/0040-6090(95)06695-0

Vepřek-Heijman, 2009, Non-linear finite element constitutive modeling of indentation into super- and ultrahard materials: The plastic deformation of the diamond tip and the ratio of hardness to tensile yield strength of super- and ultrahard nanocomposites, Surf CoatTechnol, 203, 3385, 10.1016/j.surfcoat.2009.04.028

Zhang, 2009, Friedel oscillations are limiting the strength of superhard nanocomposites and heterostructures, Phys Rev Lett, 102, 015503, 10.1103/PhysRevLett.102.015503

Zhang, 2009, Electronic structure, stability, and mechanism of the decohesion and shear of interfaces in superhard nanocomposites and heterostructures, Phys Rev B, 79, 245426, 10.1103/PhysRevB.79.245426

Vepřek, 2010, Elastic moduli of nc-TiN/a-Si3N4 nanocomposites: compressible, yet superhard, J Phys Chem Solids, 71, 1175, 10.1016/j.jpcs.2010.03.029

Vepřek, 2008, Industrial applications of superhard nanocomposite coatings, Surf CoatTechnol, 202, 5063, 10.1016/j.surfcoat.2008.05.038

Vepřek, 2010, Design of ultrahard materials: Go nano!, Philos Mag, 90, 4101, 10.1080/14786430903365294

Vepřek, 2011, Recent attempts to design new super- and ultrahard solids leads to nano-sized and nano-structured materials and coatings, J Nanosci Nanotechnol, 11, 14, 10.1166/jnn.2011.3815

Vepřek, 2007, Origin of the hardness enhancement in superhard nc-TiN/a-Si3N4 and ultrahard nc-TiN/a-Si3N4/TiSi2 nanocomposites, Philos Mag Lett, 87, 955, 10.1080/09500830701666139

Vepřek, 2005, Different approaches to superhard coatings and nanocomposites, Thin Solid Films, 476, 1, 10.1016/j.tsf.2004.10.053

Hall, 1951, The deformation and ageing of mild steel: 3. Discussion of results, Proc Phys Soc London Sect B, 64, 747, 10.1088/0370-1301/64/9/303

Tse, 2006, Hardness of nanocrystalline diamonds, Phys Rev B, 73, 140102, 10.1103/PhysRevB.73.140102

Guo, 2009, Unbinding force of chemical bonds and tensile strength in strong crystals, J Phys Condens Matter, 21, 505211, 10.1088/0953-8984/21/48/485405

Xu, 2011, Universal quantification of chemical bond strength and its application to low dimensional materials, 211

Ferroir, 2010, Carbon polymorphism in shocked meteorites: evidence for new natural ultrahard phases, Earth Planet Sci Lett, 290, 150, 10.1016/j.epsl.2009.12.015

El Goresy, 2003, A new natural, super-hard, transparent polymorph of carbon from the Popigai impact crater, Russia, CR Geosci, 335, 889, 10.1016/j.crte.2003.07.001

Wang, 2010, Crystal structure prediction via particle-swarm optimization, Phys Rev B, 82, 094116, 10.1103/PhysRevB.82.094116