Microscopic theory of hardness and design of novel superhard crystals
Tóm tắt
Từ khóa
Tài liệu tham khảo
Réaumur RAF de, 1956
Haines, 2001, Synthesis and design of superhard materials, Annu Rev Mater Res, 31, 1, 10.1146/annurev.matsci.31.1.1
Brazhkin, 2002, Harder than diamond: dreams and reality, Philos Mag A, 82, 231, 10.1080/01418610208239596
Nix, 1998, Indentation size effects in crystalline materials: a law for strain gradient plasticity, J Mech Phys Solids, 46, 411, 10.1016/S0022-5096(97)00086-0
Vepřek, 2000, Nanostructured Superhard Materials, 109
Shul'zhenko, 2010, Novel hybrid ultrahard material, J Superhard Mater, 32, 293, 10.3103/S1063457610050011
Gilman, 2009
Solozhenko, 2005, Synthesis of superhard materials, Mater Today, 8, 44, 10.1016/S1369-7021(05)71159-7
Sung, 1996, Carbon nitride and other speculative superhard materials, Mater Chem Phys, 43, 1, 10.1016/0254-0584(95)01607-V
Zhao, 2002, Superhard B-C-N materials synthesized in nanostructured bulks, J Mater Res, 17, 3139, 10.1557/JMR.2002.0454
Solozhenko, 2009, Ultimate metastable solubility of boron in diamond: synthesis of superhard diamondlike BC5, Phys Rev Lett, 102, 015506, 10.1103/PhysRevLett.102.015506
Solozhenko, 2008, On the hardness of a new boron phase, orthorhombic gamma-B-28, J Superhard Mater, 30, 428, 10.3103/S1063457608060117
He, 2002, Boron suboxide: As hard as cubic boron nitride, Appl Phys Lett, 81, 643, 10.1063/1.1494860
Gu, 2008, Transition metal borides: Superhard versus ultra-incompressihle, Adv Mater, 20, 3620, 10.1002/adma.200703025
Chung, 2007, Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure, Science, 316, 436, 10.1126/science.1139322
Crowhurst, 2006, Synthesis and characterization of the nitrides of platinum and iridium, Science, 311, 1275, 10.1126/science.1121813
Cumberland, 2005, Osmium diboride, an ultra-incompressible, hard material, J Am Chem Soc, 127, 7264, 10.1021/ja043806y
Ono, 2005, A high-pressure and high-temperature synthesis of platinum carbide, Solid State Commun, 133, 55, 10.1016/j.ssc.2004.09.048
Young, 2006, Synthesis of novel transition metal nitrides IrN2 and OsN2, Phys Rev Lett, 96, 155501, 10.1103/PhysRevLett.96.155501
Dubrovinskaia, 2007, Comment on “Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure”, Science, 318, 1550-1550, 10.1126/science.1147650
Ceder, 1998, Computational materials science – predicting properties from scratch, Science, 280, 1099, 10.1126/science.280.5366.1099
Gilman, 1973, Hardness – a strength microprobe
Liu, 1989, Prediction of new low compressibility solids, Science, 245, 841, 10.1126/science.245.4920.841
Teter, 1998, Computational alchemy: the search for new superhard materials, MRS Bull, 23, 22, 10.1557/S0883769400031420
Levine, 2009, Advancements in the search for superhard ultra-incompressible metal borides, Adv Funct Mater, 19, 3519, 10.1002/adfm.200901257
Chen, 2011, Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics, 19, 1275, 10.1016/j.intermet.2011.03.026
Pugh, 1954, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos Mag, 45, 823, 10.1080/14786440808520496
Guo, 2008, Hardness of covalent compounds: roles of metallic component and d valence electrons, J Appl Phys, 104, 023503, 10.1063/1.2956594
He, 2005, Ionicities of boron–boron bonds in B12 icosahedra, Phys Rev Lett, 94, 015504, 10.1103/PhysRevLett.94.015504
Li, 2008, Electronegativity identification of novel superhard materials, Phys Rev Lett, 100, 235504, 10.1103/PhysRevLett.100.235504
Simunek, 2007, How to estimate hardness of crystals on a pocket calculator, Phys Rev B, 75, 172108, 10.1103/PhysRevB.75.172108
Simunek, 2006, Hardness of covalent and ionic crystals: first-principle calculations, Phys Rev Lett, 96, 085501, 10.1103/PhysRevLett.96.085501
Kaner, 2005, Materials science – designing superhard materials, Science, 308, 1268, 10.1126/science.1109830
Tse, 2010, Intrinsic hardness of crystalline solids, J Superhard Mater, 32, 177, 10.3103/S1063457610030044
Phillips, 1970, Ionicity of chemical bond in crystals, Rev Mod Phys, 42, 317, 10.1103/RevModPhys.42.317
Siethoff, 2000, Homopolar band gap and thermal activation parameters of plasticity of diamond and zinc-blende semiconductors, J Appl Phys, 87, 3301, 10.1063/1.372340
Pauling, 1960
Liu, 2011, Superhard polymorphs of diamond-like BC7, Solid State Commun, 151, 716, 10.1016/j.ssc.2011.02.013
Liu, 2011, Superhard and superconductive polymorphs of diamond-like BC3, Phys Lett A, 375, 771, 10.1016/j.physleta.2010.12.034
Li, 2011, Superhard phases of B2O: an isoelectronic compound of diamond, Diamond Relat Mater, 20, 501, 10.1016/j.diamond.2011.01.035
Li, 2010, Superhard and superconducting structures of BC5, J Appl Phys, 108, 023507, 10.1063/1.3452374
Fan, 2009, A first-principle study on the structure, stability and hardness of cubic BC2N, Diamond Relat Mater, 18, 1278, 10.1016/j.diamond.2009.05.003
Guo, 2007, Theoretical hardness of the cubic BC2N, Diamond Relat Mater, 16, 526, 10.1016/j.diamond.2006.10.009
Li, 2011, B2CO: a potential superhard material in the B-C-O system, EPL, 95, 66006, 10.1209/0295-5075/95/66006
Li, 2009, First-principle calculation on structures and properties of diamond-like B3C10N3 compound, J Alloys Compd, 481, 855, 10.1016/j.jallcom.2009.03.130
Zhao, 2010, Bulk Re2C: crystal structure, hardness, and ultra-incompressibility, Cryst Growth Des, 10, 5024, 10.1021/cg100659g
Wang, 2011, Pressure-induced structural transition of OsN2 and effect of metallic bonding on its hardness, EPL, 95, 66005, 10.1209/0295-5075/95/66005
Shao, 2011, Prediction of a low-dense BC2N phase, Chin Phys Lett, 28, 057101, 10.1088/0256-307X/28/5/057101
Wang, 2010, Design of superhard ternary compounds under high pressure: SiC2N4 and Si2CN4, J Phys Chem C, 114, 8609, 10.1021/jp100990b
Liu, 2007, Comment on “Hardness of covalent and ionic crystals: first-principle calculations”, Phys Rev Lett, 98, 109601, 10.1103/PhysRevLett.98.109601
Simunek, 2007, Simunek and Vackar reply, Phys Rev Lett, 98, 109602
Li, 2009, Hardness of materials: studies at levels from atoms to crystals, Chin Sci Bull, 54, 131, 10.1007/s11434-008-0550-8
Li, 2008, Electronegativities of elements in covalent crystals, J Phys Chem A, 112, 7894, 10.1021/jp8012738
Clerc, 1998, Mechanical hardness: a semiempirical theory based on screened electrostatics and elastic shear, J Phys Chem Solids, 59, 1071, 10.1016/S0022-3697(97)00251-5
Simunek, 2009, Anisotropy of hardness from first principles: the cases of ReB2 and OsB2, Phys Rev B, 80, 060103, 10.1103/PhysRevB.80.060103
Lyakhov, 2011, Evolutionary search for superhard materials: methodology and applications to forms of carbon and TiO2, Phys Rev B, 84, 092103, 10.1103/PhysRevB.84.092103
Oganov, 2011, How evolutionary crystal structure prediction works and why, Acc Chem Res, 44, 227, 10.1021/ar1001318
Grimvall, 1999
Martin, 2004
Oganov, 2009, Boron: a hunt for superhard polymorphs, J Superhard Mater, 31, 285, 10.3103/S1063457609050013
Solozhenko, 2002, Synthesis of novel superhard phases in the B-C-N system, High Pressure Res, 22, 519, 10.1080/08957950212439
Xu, 2011, Prediction of a superconductive superhard material: diamond-like BC7, J Appl Phys, 110, 013501, 10.1063/1.3601349
Calandra, 2008, High-Tc superconductivity in superhard diamondlike BC5, Phys Rev Lett, 101, 016401, 10.1103/PhysRevLett.101.016401
Zinin, 2007, Raman spectroscopy of the BC3 phase obtained under high pressure and high temperature, J Raman Spectrosc, 38, 1362, 10.1002/jrs.1776
Mohammadi, 2011, Tungsten tetraboride, an inexpensive superhard material, Proc Natl Acad Sci U S A, 108, 10958, 10.1073/pnas.1102636108
Ivanovskii, 2012, Mechanical and electronic properties of diborides of transition 3d–5d metals from first principles: toward search of novel ultra-incompressible and superhard materials, Prog Mater Sci, 57, 184, 10.1016/j.pmatsci.2011.05.004
Kurakevych, 2009, Superhard phases of simple substances and binary compounds of the B-C-N-O system: from diamond to the latest results (a Review), J Superhard Mater, 31, 139, 10.3103/S1063457609030010
Hu, 2006, First-principles studies of structural and electronic properties of hexagonal BC5, Phys Rev B, 73, 214116, 10.1103/PhysRevB.73.214116
Guo, 2007, First-principles investigation of dense B4C3, J Phys Chem C, 111, 13679, 10.1021/jp074190c
Jansson, 1985, Chemical vapour deposition of boron carbides in the temperature range 1300–1500 K and at a reduced pressure, Thin Solid Films, 124, 101, 10.1016/0040-6090(85)90251-2
Guo, 2006, Bond ionicities and hardness of B13C2-like structured ByX crystals (X=C, N, O, P, As), Phys Rev B, 73, 104115, 10.1103/PhysRevB.73.104115
Liu, 2006, Prediction of a sandwichlike conducting superhard boron carbide: first-principles calculations, Phys Rev B, 73, 172101, 10.1103/PhysRevB.73.172101
Yang, 2007, Diamond-like BC3 as a superhard conductor identified by ideal strength calculations, J Phys Condens Matter, 19, 346223, 10.1088/0953-8984/19/34/346223
Zinin PV, Jia R, Acosta T, Ming LC, Ishii H, Hellebrand E. Unpublished data.
Liang, 2009, Superhardness, stability, and metallicity of diamondlike BC5: density functional calculations, Phys Rev B, 80, 113401, 10.1103/PhysRevB.80.113401
Yao, 2009, Crystal and electronic structure of superhard BC5: first-principles structural optimizations, Phys Rev B, 80, 094106, 10.1103/PhysRevB.80.094106
Jiang, 2009, Superhard diamondlike BC5: a first-principles investigation, Phys Rev B, 80, 184101, 10.1103/PhysRevB.80.184101
Solozhenko, 2004, Synthesis of bulk superhard semiconducting B–C material, Appl Phys Lett, 85, 1508, 10.1063/1.1786363
Xu, 2010, Prediction of a three-dimensional conductive superhard material: diamond-like BC2, J Phys Chem C, 114, 22688, 10.1021/jp106926g
Dong, 2011, Superconductive superhard phase of BC7: predicted via ab initio calculations, Diamond Relat Mater, 20, 454, 10.1016/j.diamond.2011.01.034
Lowther, 2005, Potential super-hard phases and the stability of diamond-like boron–carbon structures, J Phys Condens Matter, 17, 3221, 10.1088/0953-8984/17/21/016
Ming, 2010, Synthesis of dense BCx phases under high-pressure and high-temperature, J Phys Conf Ser, 215, 012135, 10.1088/1742-6596/215/1/012135
Nkambule, 2010, Crystalline and random “diamond-like” boron–carbon structures, Solid State Commun, 150, 133, 10.1016/j.ssc.2009.09.041
Zhuang, 2010, Stability and mechanical properties of BCx crystals: the role of B–B bonds and boron concentration, J Phys Condens Matter, 22, 215401, 10.1088/0953-8984/22/21/215401
Wang, 2004, A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes, Proc Natl Acad Sci U S A, 101, 13699, 10.1073/pnas.0405877101
Ivanovskaya, 2010, Simulation of novel superhard carbon materials based on fullerenes and nanotubes, J Superhard Mater, 32, 67, 10.3103/S1063457610020012
Li, 2009, Superhard monoclinic polymorph of carbon, Phys Rev Lett, 102, 175506, 10.1103/PhysRevLett.102.175506
Sheng, 2011, T-carbon: a novel carbon allotrope, Phys Rev Lett, 106, 155703, 10.1103/PhysRevLett.106.155703
Umemoto, 2010, Body-centered tetragonal C4: a viable sp3 carbon allotrope, Phys Rev Lett, 104, 125504, 10.1103/PhysRevLett.104.125504
Zhou, 2010, Ab initio study of the formation of transparent carbon under pressure, Phys Rev B, 82, 134126, 10.1103/PhysRevB.82.134126
Zhu, 2011, Denser than diamond: Ab initio search for superdense carbon allotropes, Phys Rev B, 83, 193410, 10.1103/PhysRevB.83.193410
Mao, 2003, Bonding changes in compressed superhard graphite, Science, 302, 425, 10.1126/science.1089713
Wang, 2011, Low-temperature phase transformation from graphite to sp3 orthorhombic carbon, Phys Rev Lett, 106, 075501, 10.1103/PhysRevLett.106.075501
Zhao, 2011, Novel superhard carbon: C-centered orthorhombic C8, Phys Rev Lett, 107, 215502, 10.1103/PhysRevLett.107.215502
Ruoff, 1991, The bulk modulus of C60 molecules and crystals: a molecular mechanics approach, Appl Phys Lett, 59, 1553, 10.1063/1.106280
Brazhkin, 1998, Mechanical properties of the 3D polymerized, sp2-sp3 amorphous, and diamond-plus-graphite nanocomposite carbon phases prepared from C60 under high pressure, J Appl Phys, 84, 219, 10.1063/1.368021
Burgos, 2000, New superhard phases for three-dimensional C60-based fullerites, Phys Rev Lett, 85, 2328, 10.1103/PhysRevLett.85.2328
Yamanaka, 2006, Electron conductive three-dimensional polymer of cuboidal C60, Phys Rev Lett, 96, 076602, 10.1103/PhysRevLett.96.076602
Okada, 1999, New metallic crystalline carbon: three dimensionally polymerized C60 fullerite, Phys Rev Lett, 83, 1986, 10.1103/PhysRevLett.83.1986
Braga, 2007, Molecular dynamics simulation of single wall carbon nanotubes polymerization under compression, J Comput Chem, 28, 1724, 10.1002/jcc.20684
Chernozatonskii, 2002, Crystals of covalently bonded carbon nanotubes: energetics and electronic structures, Phys Rev B, 65, 241404, 10.1103/PhysRevB.65.241404
Chernozatonskii, 1998, Polymerized nanotube structures – new zeolites?, Chem Phys Lett, 297, 257, 10.1016/S0009-2614(98)01100-2
Gilman, 2006, Design of hard crystals, Int J Refract Met Hard Mater, 24, 1, 10.1016/j.ijrmhm.2005.05.015
Hebbache, 2006, A new superhard material: osmium diboride OsB2, Solid State Commun, 139, 227, 10.1016/j.ssc.2006.05.041
Gregoryanz, 2004, Synthesis and characterization of a binary noble metal nitride, Nat Mater, 3, 294, 10.1038/nmat1115
Soignard, 2003, High-pressure synthesis and study of low-compressibility molybdenum nitride (MoN and MoN1-x) phases, Phys Rev B, 68, 132101, 10.1103/PhysRevB.68.132101
Zerr, 2003, Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure, Nat Mater, 2, 185, 10.1038/nmat836
Zhao, 2010, Prediction of a conducting hard ductile cubic IrC, Phys Status Solidi RRL, 4, 230, 10.1002/pssr.201004282
Zhao, 2011, Superconducting ultraincompressible hard cubic Re4C, Comput Mater Sci, 50, 1592, 10.1016/j.commatsci.2010.11.028
Zhao, 2010, Semiconducting superhard ruthenium monocarbide, J Phys Chem C, 114, 9961, 10.1021/jp1000896
Soignard, 2007, Compressibility measurements and phonon spectra of hexagonal transition-metal nitrides at high pressure: ε-TaN, δ-MoN, and Cr2N, Phys Rev B, 75, 014104, 10.1103/PhysRevB.75.014104
Zerr, 2006, Recent advances in new hard high-pressure nitrides, Adv Mater, 18, 2933, 10.1002/adma.200501872
Chen, 2005, Hard superconducting nitrides, Proc Natl Acad Sci U S A, 102, 3198, 10.1073/pnas.0500174102
Guo, 2008, Structure and mechanical properties of osmium carbide: first-principles calculations, Appl Phys Lett, 93, 041904, 10.1063/1.2964179
Jhi, 1999, Electronic mechanism of hardness enhancement in transition-metal carbonitrides, Nature, 399, 132, 10.1038/20148
Jhi, 2001, Vacancy hardening and softening in transition metal carbides and nitrides, Phys Rev Lett, 86, 3348, 10.1103/PhysRevLett.86.3348
Jhi, 2001, Mechanical instability and ideal shear strength of transition metal carbides and nitrides, Phys Rev Lett, 87, 075503, 10.1103/PhysRevLett.87.075503
Tsetseris, 2007, Structure and interaction of point defects in transition-metal nitrides, Phys Rev B, 76, 224107, 10.1103/PhysRevB.76.224107
Zhang, 2011, Thermodynamic stability and unusual strength of ultra-incompressible rhenium nitrides, Phys Rev B, 83, 060101, 10.1103/PhysRevB.83.060101
Li, 2011, Crystal structures, mechanical and electronic properties of tantalum monocarbide and mononitride, J Superhard Mater, 33, 173, 10.3103/S1063457611030051
Rabah, 2010, Prediction of stabilities phase and elastic properties of palladium carbide, Comput Mater Sci, 48, 556, 10.1016/j.commatsci.2010.02.023
Yang, 2009, First-principles calculations of mechanical properties of TiC and TiN, J Alloys Compd, 485, 542, 10.1016/j.jallcom.2009.06.023
Luo K, Zhao ZS, Wang QQ, Xu B, He JL, Tian YJ. Unpublished data.
Friedrich, 2011, Synthesis of binary transition metal nitrides, carbides and borides from the elements in the laser-heated diamond anvil cell and their structure-property relations, Materials, 4, 1648, 10.3390/ma4101648
Wen, 2011, Body-centered tetragonal B2N2: a novel sp3 bonding boron nitride polymorph, Phys Chem Chem Phys, 13, 14565, 10.1039/c1cp20435a
Zhao, 2005, Structural evolution of turbostratic carbon nitride after being treated with a pulse discharge, Diamond Relat Mater, 14, 1700, 10.1016/j.diamond.2005.06.017
Zhao, 2005, Turbostratic carbon nitride prepared by pyrolysis of melamine, J Mater Sci, 40, 2645, 10.1007/s10853-005-2096-3
Zhao, 2008, Large-scale synthesis of nitrogen-rich carbon nitride microfibers by using graphitic carbon nitride as precursor, Adv Mater, 20, 1777, 10.1002/adma.200702230
He, 2006, Predicting hardness of dense C3N4 polymorphs, Appl Phys Lett, 88, 101906, 10.1063/1.2182109
Wang, 2001, Cubic-C3N4 nanoparticles synthesized in CNx/TiNx multilayer films, Chem Phys Lett, 334, 7, 10.1016/S0009-2614(00)01251-3
Li, 2008, Synthesis of semimetallic BC3.3N with orthorhombic structure at high pressure and temperature, Cryst Growth Des, 8, 2096, 10.1021/cg701206a
Luo, 2008, Refined crystal structure and mechanical properties of superhard BC4N crystal: first-principles calculations, J Phys Chem C, 112, 9516, 10.1021/jp801530z
Luo, 2007, Body-centered superhard BC2N phases from first principles, Phys Rev B, 76, 094103, 10.1103/PhysRevB.76.094103
Luo, 2007, First-principles study of wurtzite BC2N, Phys Rev B, 76, 092107, 10.1103/PhysRevB.76.092107
Luo, 2007, Ground-state properties and hardness of high density BC6N phases originating from diamond structure, J Appl Phys, 101, 083505, 10.1063/1.2723866
He, 2001, Orthorhombic B2CN crystal synthesized by high pressure and temperature, Chem Phys Lett, 340, 431, 10.1016/S0009-2614(01)00400-6
Du, 2009, Hardness of α- and β-Si3-nCnN4 (n=0, 1, 2, 3) crystals, Diamond Relat Mater, 18, 72, 10.1016/j.diamond.2008.09.025
Solozhenko, 2008, New boron subnitride B13N2: HP-HT synthesis, structure and equation of state, J Phys Conf Ser, 121, 062001, 10.1088/1742-6596/121/6/062001
Hubert, 1998, High-pressure, high-temperature synthesis and characterization of boron suboxide (B6O), Chem Mater, 10, 1530, 10.1021/cm970433+
Argon, 2008
Siegel, 1995, Mechanical properties of nanophase metals, Nanostruct Mater, 6, 205, 10.1016/0965-9773(95)00044-5
Irifune, 2003, Materials – ultrahard polycrystalline diamond from graphite, Nature, 421, 599, 10.1038/421599b
Dubrovinskaia, 2007, Superhard nanocomposite of dense polymorphs of boron nitride: noncarbon material has reached diamond hardness, Appl Phys Lett, 90, 101912, 10.1063/1.2711277
Vepřek, 1995, A concept for the design of novel superhard coatings, Thin Solid Films, 268, 64, 10.1016/0040-6090(95)06695-0
Vepřek-Heijman, 2009, Non-linear finite element constitutive modeling of indentation into super- and ultrahard materials: The plastic deformation of the diamond tip and the ratio of hardness to tensile yield strength of super- and ultrahard nanocomposites, Surf CoatTechnol, 203, 3385, 10.1016/j.surfcoat.2009.04.028
Zhang, 2009, Friedel oscillations are limiting the strength of superhard nanocomposites and heterostructures, Phys Rev Lett, 102, 015503, 10.1103/PhysRevLett.102.015503
Zhang, 2009, Electronic structure, stability, and mechanism of the decohesion and shear of interfaces in superhard nanocomposites and heterostructures, Phys Rev B, 79, 245426, 10.1103/PhysRevB.79.245426
Vepřek, 2010, Elastic moduli of nc-TiN/a-Si3N4 nanocomposites: compressible, yet superhard, J Phys Chem Solids, 71, 1175, 10.1016/j.jpcs.2010.03.029
Vepřek, 2008, Industrial applications of superhard nanocomposite coatings, Surf CoatTechnol, 202, 5063, 10.1016/j.surfcoat.2008.05.038
Vepřek, 2010, Design of ultrahard materials: Go nano!, Philos Mag, 90, 4101, 10.1080/14786430903365294
Vepřek, 2011, Recent attempts to design new super- and ultrahard solids leads to nano-sized and nano-structured materials and coatings, J Nanosci Nanotechnol, 11, 14, 10.1166/jnn.2011.3815
Vepřek, 2007, Origin of the hardness enhancement in superhard nc-TiN/a-Si3N4 and ultrahard nc-TiN/a-Si3N4/TiSi2 nanocomposites, Philos Mag Lett, 87, 955, 10.1080/09500830701666139
Vepřek, 2005, Different approaches to superhard coatings and nanocomposites, Thin Solid Films, 476, 1, 10.1016/j.tsf.2004.10.053
Hall, 1951, The deformation and ageing of mild steel: 3. Discussion of results, Proc Phys Soc London Sect B, 64, 747, 10.1088/0370-1301/64/9/303
Guo, 2009, Unbinding force of chemical bonds and tensile strength in strong crystals, J Phys Condens Matter, 21, 505211, 10.1088/0953-8984/21/48/485405
Xu, 2011, Universal quantification of chemical bond strength and its application to low dimensional materials, 211
Ferroir, 2010, Carbon polymorphism in shocked meteorites: evidence for new natural ultrahard phases, Earth Planet Sci Lett, 290, 150, 10.1016/j.epsl.2009.12.015
El Goresy, 2003, A new natural, super-hard, transparent polymorph of carbon from the Popigai impact crater, Russia, CR Geosci, 335, 889, 10.1016/j.crte.2003.07.001