Phân tích vi mô về độc tính của nanoparticle bạc do thực vật trung gian trong cá hồi cầu vồng (Oncorhynchus mykiss)
Tóm tắt
Trong những năm qua, khoa học nano và ứng dụng của vật liệu nano đã thu hút sự chú ý của các nhà nghiên cứu do lịch sử ứng dụng phong phú của chúng. Đặc biệt, việc ứng dụng các hạt nano bạc (AgNPs) cung cấp các giải pháp đổi mới cho một loạt các vấn đề môi trường, chẳng hạn như xử lý nước thải, phục hồi sinh học và cảm biến môi trường. Bên cạnh tất cả những điều này, việc ứng dụng vật liệu nano bạc trong môi trường gây ra những vấn đề nghiêm trọng đối với hệ sinh thái trên cạn và dưới nước. Để giải quyết những mối quan tâm này, nghiên cứu hiện tại đã được tiến hành để phơi nhiễm các con cá hồi cầu vồng (
Từ khóa
Tài liệu tham khảo
Ali I., 2018, Green synthesis of silver nanoparticles by using bacterial extract and its antimicrobial activity against pathogens, International Journal of Biosciences, 13, 1
Allahverdiyev A. M., 2011, Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light, International Journal of Nanomedicine, 6, 2705, 10.2147/IJN.S23883
Aritonang H. F., 2019, Synthesis of silver nanoparticles using aqueous extract of medicinal plants' (Impatiens balsamina and Lantana camara) fresh leaves and analysis of antimicrobial activity, International Journal of Microbiology, 2019, 10.1155/2019/8642303
Auclair J., 2019, The influence of surface coatings on the toxicity of silver nanoparticle in rainbow trout, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 226
Cáceres‐Vélez P. R., 2019, Impact of humic acid on the persistence, biological fate and toxicity of silver nanoparticles: A study in adult zebrafish, Environmental Nanotechnology, Monitoring & Management, 12, 10.1016/j.enmm.2019.100234
Chawla J., 2018, Identifying challenges in assessing risks of exposures of silver nanoparticles, Exposure and Health, 10, 61, 10.1007/s12403-017-0245-y
Drake P. L., 2005, Exposure‐related health effects of silver and silver compounds: A review, The Annals of Occupational Hygiene, 49, 575
Fuentes‐Valencia M. A., 2020, Silver nanoparticles are lethal to the ciliate model Tetrahymena and safe to the pike silverside Chirostoma estor, Experimental Parasitology, 209, 10.1016/j.exppara.2019.107825
Gottschalk F., 2013, Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies, Environmental Pollution, 181, 287, 10.1016/j.envpol.2013.06.003
Haghighat F., 2021, Titanium dioxide nanoparticles affect the toxicity of silver nanoparticles in common carp (Cyprinus carpio), Chemosphere, 262, 10.1016/j.chemosphere.2020.127805
Iaria C., 2019, Occurrence of diseases in fish used for experimental research, Laboratory Animals, 53, 619, 10.1177/0023677219830441
Ibrahim A. T. A., 2015, Protective role of lycopene and vitamin E against diazinon‐induced biochemical changes in Oreochromis niloticus, African Journal of Environmental Science and Technology, 9, 557, 10.5897/AJEST2014.1853
Ibrahim A. T. A., 2020, Toxicological impact of green synthesized silver nanoparticles and protective role of different selenium type on Oreochromis niloticus: Hematological and biochemical response, Journal of Trace Elements in Medicine and Biology, 61, 10.1016/j.jtemb.2020.126507
Ji J. H., 2007, Twenty‐eight‐day inhalation toxicity study of silver nanoparticles in Sprague‐Dawley rats, Inhalation Toxicology, 19, 857, 10.1080/08958370701432108
Kakakhel M. A., 2021, Biological synthesis of silver nanoparticles using animal blood, their preventive efficiency of bacterial species, and ecotoxicity in common carp fish, Microscopy Research and Technique, 10.1002/jemt.23733
Khosravi‐Katuli K., 2018, Comparative toxicity of silver nanoparticle and ionic silver in juvenile common carp (Cyprinus carpio): Accumulation, physiology and histopathology, Journal of Hazardous Materials, 359, 373, 10.1016/j.jhazmat.2018.07.064
Kühr S., 2018, Silver nanoparticles in sewage treatment plant effluents: Chronic effects and accumulation of silver in the freshwater amphipod Hyalella azteca, Environmental Sciences Europe, 30, 7, 10.1186/s12302-018-0137-1
Lankveld D. P. K., 2010, The kinetics of the tissue distribution of silver nanoparticles of different sizes, Biomaterials, 31, 8350, 10.1016/j.biomaterials.2010.07.045
Liaqat F., 2021, Comparative evaluation of the toxicological effect of silver salt (AgNO3) and silver nanoparticles on Cyprinus carpio synthesized by chemicals and marine algae using scanning electron microscopy, Microscopy Research and Technique
Liu H., 2019, Toxicity responses of different organs of zebrafish (Danio rerio) to silver nanoparticles with different particle sizes and surface coatings, Environmental Pollution, 246, 414, 10.1016/j.envpol.2018.12.034
Ma Y., 2018, Sex dependent effects of silver nanoparticles on the zebrafish gut microbiota, Environmental Science: Nano, 5, 740
Mackevica A., 2017, The release of silver nanoparticles from commercial toothbrushes, Journal of Hazardous Materials, 322, 270, 10.1016/j.jhazmat.2016.03.067
Martini L., 2000, Evaluation of pain and stress levels of animals used in experimental research, Journal of Surgical Research, 88, 114, 10.1006/jsre.1999.5789
McQuillan J. S., 2012, Silver nanoparticle enhanced silver ion stress response in Escherichia coli K12, Nanotoxicology, 6, 857, 10.3109/17435390.2011.626532
Mohsenpour R., 2020, In vitro effects of silver nanoparticles on gills morphology of female Guppy (Poecilia reticulate) after a short‐term exposure, Microscopy Research and Technique, 83, 1552, 10.1002/jemt.23549
Nho R., 2020, Pathological effects of nano‐sized particles on the respiratory system, Nanomedicine: Nanotechnology, Biology and Medicine, 29, 10.1016/j.nano.2020.102242
Olsson I. A. S., 2016, Protecting animals and enabling research in the European Union: An overview of development and implementation of directive 2010/63/EU, ILAR Journal, 57, 347, 10.1093/ilar/ilw029
Ostaszewska T., 2016, Histopathological effects of silver and copper nanoparticles on the epidermis, gills, and liver of Siberian sturgeon, Environmental Science and Pollution Research, 23, 1621, 10.1007/s11356-015-5391-9
Pecoraro R., 2017, Evaluation of chronic nanosilver toxicity to adult zebrafish, Frontiers in Physiology, 8, 1011, 10.3389/fphys.2017.01011
Pecoraro R., 2019, Evaluation of the effects of silver nanoparticles on Danio rerio cornea: Morphological and ultrastructural analysis, Microscopy Research and Technique, 82, 1297, 10.1002/jemt.23280
Rahman M. F., 2009, Expression of genes related to oxidative stress in the mouse brain after exposure to silver‐25 nanoparticles, Toxicology Letters, 187, 15, 10.1016/j.toxlet.2009.01.020
Salari Joo H., 2013, Bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss): Influence of concentration and salinity, Aquatic Toxicology, 140, 398, 10.1016/j.aquatox.2013.07.003
Sayed A. E.‐D. H., 2020, Histopathological and histochemical effects of silver nanoparticles on the gills and muscles of African catfish (Clarias garepinus), Scientific African, 7, 10.1016/j.sciaf.2019.e00230
Singh A. V., 2019, Review of emerging concepts in nanotoxicology: Opportunities and challenges for safer nanomaterial design, Toxicology Mechanisms and Methods, 29, 378, 10.1080/15376516.2019.1566425
Temizel‐Sekeryan S., 2020, Global environmental impacts of silver nanoparticle production methods supported by life cycle assessment, Resources, Conservation and Recycling, 156, 104676, 10.1016/j.resconrec.2019.104676
Topuz O. K., 2021, Characterization and emulsifying properties of aquatic lecithins isolated from processing discard of rainbow trout fish and its eggs, Food Chemistry, 339, 128103, 10.1016/j.foodchem.2020.128103
Van de Walle A., 2020, Magnetic nanoparticles in regenerative medicine: What of their fate and impact in stem cells?, Materials Today Nano, 100084
Xiang Q.‐Q., 2020, Proteomic profiling reveals the differential toxic responses of gills of common carp exposed to nanosilver and silver nitrate, Journal of Hazardous Materials, 394, 122562, 10.1016/j.jhazmat.2020.122562
Yin J., 2021, Pretreatment with selenium prevented the accumulation of hexavalent chromium in rainbow trout (Oncorhynchus mykiss) and reduced the potential health risk of fish consumption, Food Control, 122, 107817, 10.1016/j.foodcont.2020.107817
Yu S., 2014, Highly dynamic PVP‐coated silver nanoparticles in aquatic environments: Chemical and morphology change induced by oxidation of Ag0 and reduction of Ag+, Environmental Science & Technology, 48, 403, 10.1021/es404334a