Phân tích vi mô về độc tính của nanoparticle bạc do thực vật trung gian trong cá hồi cầu vồng (Oncorhynchus mykiss)

Microscopy Research and Technique - Tập 84 Số 10 - Trang 2302-2310 - 2021
Ihsan Ali1, Shuaib Khan2, Khadim Shah3, Haroon Haroon1, Kalimullah4
1College of Life Science, Northwest University, Xi’an, Shaanxi, China
2State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
3Institutes and Key Laboratories, Chemistry Department, Tsinghua University, Beijing, China
4Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan

Tóm tắt

Tóm tắt

Trong những năm qua, khoa học nano và ứng dụng của vật liệu nano đã thu hút sự chú ý của các nhà nghiên cứu do lịch sử ứng dụng phong phú của chúng. Đặc biệt, việc ứng dụng các hạt nano bạc (AgNPs) cung cấp các giải pháp đổi mới cho một loạt các vấn đề môi trường, chẳng hạn như xử lý nước thải, phục hồi sinh học và cảm biến môi trường. Bên cạnh tất cả những điều này, việc ứng dụng vật liệu nano bạc trong môi trường gây ra những vấn đề nghiêm trọng đối với hệ sinh thái trên cạn và dưới nước. Để giải quyết những mối quan tâm này, nghiên cứu hiện tại đã được tiến hành để phơi nhiễm các con cá hồi cầu vồng (Oncorhynchus mykiss) với các nồng độ khác nhau của các hạt nano bạc trong 25 ngày. Trong nghiên cứu hiện tại, tỷ lệ tử vong (LC50), sự tích lũy và những thay đổi mô bệnh học đã được phân tích. Kết quả cho thấy rằng các hạt nano bạc chủ yếu được tích lũy ở gan, tiếp theo là ruột, mang và cơ. Phân tích vi mô cho thấy sự tích lũy các hạt nano bạc dẫn đến những thay đổi histological trong mô mang và ruột. Hoại tử, thoái hóa, chất nhờn trên bề mặt của lamella mang, sự phân hủy tế bào và teo lamella mang đã được tìm thấy ở nồng độ (0.04 mg/L) và (0.06 mg/L). Các phát hiện trong nghiên cứu hiện tại cho thấy độc tính thấp hơn về mặt tỷ lệ tử vong và sự tích lũy của AgNPs. Do đó, cần có các nghiên cứu hệ thống thêm để đánh giá sự ảnh hưởng của các hạt nano bạc đến hệ sinh thái dưới nước.

Từ khóa


Tài liệu tham khảo

10.1016/j.ecolind.2018.06.023

Ali I., 2018, Green synthesis of silver nanoparticles by using bacterial extract and its antimicrobial activity against pathogens, International Journal of Biosciences, 13, 1

Allahverdiyev A. M., 2011, Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light, International Journal of Nanomedicine, 6, 2705, 10.2147/IJN.S23883

Aritonang H. F., 2019, Synthesis of silver nanoparticles using aqueous extract of medicinal plants' (Impatiens balsamina and Lantana camara) fresh leaves and analysis of antimicrobial activity, International Journal of Microbiology, 2019, 10.1155/2019/8642303

Auclair J., 2019, The influence of surface coatings on the toxicity of silver nanoparticle in rainbow trout, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 226

Cáceres‐Vélez P. R., 2019, Impact of humic acid on the persistence, biological fate and toxicity of silver nanoparticles: A study in adult zebrafish, Environmental Nanotechnology, Monitoring & Management, 12, 10.1016/j.enmm.2019.100234

Chawla J., 2018, Identifying challenges in assessing risks of exposures of silver nanoparticles, Exposure and Health, 10, 61, 10.1007/s12403-017-0245-y

Drake P. L., 2005, Exposure‐related health effects of silver and silver compounds: A review, The Annals of Occupational Hygiene, 49, 575

Fuentes‐Valencia M. A., 2020, Silver nanoparticles are lethal to the ciliate model Tetrahymena and safe to the pike silverside Chirostoma estor, Experimental Parasitology, 209, 10.1016/j.exppara.2019.107825

Gottschalk F., 2013, Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies, Environmental Pollution, 181, 287, 10.1016/j.envpol.2013.06.003

Haghighat F., 2021, Titanium dioxide nanoparticles affect the toxicity of silver nanoparticles in common carp (Cyprinus carpio), Chemosphere, 262, 10.1016/j.chemosphere.2020.127805

Iaria C., 2019, Occurrence of diseases in fish used for experimental research, Laboratory Animals, 53, 619, 10.1177/0023677219830441

Ibrahim A. T. A., 2015, Protective role of lycopene and vitamin E against diazinon‐induced biochemical changes in Oreochromis niloticus, African Journal of Environmental Science and Technology, 9, 557, 10.5897/AJEST2014.1853

Ibrahim A. T. A., 2020, Toxicological impact of green synthesized silver nanoparticles and protective role of different selenium type on Oreochromis niloticus: Hematological and biochemical response, Journal of Trace Elements in Medicine and Biology, 61, 10.1016/j.jtemb.2020.126507

Ji J. H., 2007, Twenty‐eight‐day inhalation toxicity study of silver nanoparticles in Sprague‐Dawley rats, Inhalation Toxicology, 19, 857, 10.1080/08958370701432108

10.1016/j.cbpc.2019.108680

10.1016/j.ibiod.2019.104721

Kakakhel M. A., 2021, Biological synthesis of silver nanoparticles using animal blood, their preventive efficiency of bacterial species, and ecotoxicity in common carp fish, Microscopy Research and Technique, 10.1002/jemt.23733

10.1007/s12668-021-00861-2

10.1186/s12302-021-00453-7

Khosravi‐Katuli K., 2018, Comparative toxicity of silver nanoparticle and ionic silver in juvenile common carp (Cyprinus carpio): Accumulation, physiology and histopathology, Journal of Hazardous Materials, 359, 373, 10.1016/j.jhazmat.2018.07.064

Kühr S., 2018, Silver nanoparticles in sewage treatment plant effluents: Chronic effects and accumulation of silver in the freshwater amphipod Hyalella azteca, Environmental Sciences Europe, 30, 7, 10.1186/s12302-018-0137-1

Lankveld D. P. K., 2010, The kinetics of the tissue distribution of silver nanoparticles of different sizes, Biomaterials, 31, 8350, 10.1016/j.biomaterials.2010.07.045

Liaqat F., 2021, Comparative evaluation of the toxicological effect of silver salt (AgNO3) and silver nanoparticles on Cyprinus carpio synthesized by chemicals and marine algae using scanning electron microscopy, Microscopy Research and Technique

Liu H., 2019, Toxicity responses of different organs of zebrafish (Danio rerio) to silver nanoparticles with different particle sizes and surface coatings, Environmental Pollution, 246, 414, 10.1016/j.envpol.2018.12.034

Ma Y., 2018, Sex dependent effects of silver nanoparticles on the zebrafish gut microbiota, Environmental Science: Nano, 5, 740

Mackevica A., 2017, The release of silver nanoparticles from commercial toothbrushes, Journal of Hazardous Materials, 322, 270, 10.1016/j.jhazmat.2016.03.067

Martini L., 2000, Evaluation of pain and stress levels of animals used in experimental research, Journal of Surgical Research, 88, 114, 10.1006/jsre.1999.5789

McQuillan J. S., 2012, Silver nanoparticle enhanced silver ion stress response in Escherichia coli K12, Nanotoxicology, 6, 857, 10.3109/17435390.2011.626532

Mohsenpour R., 2020, In vitro effects of silver nanoparticles on gills morphology of female Guppy (Poecilia reticulate) after a short‐term exposure, Microscopy Research and Technique, 83, 1552, 10.1002/jemt.23549

Nho R., 2020, Pathological effects of nano‐sized particles on the respiratory system, Nanomedicine: Nanotechnology, Biology and Medicine, 29, 10.1016/j.nano.2020.102242

Olsson I. A. S., 2016, Protecting animals and enabling research in the European Union: An overview of development and implementation of directive 2010/63/EU, ILAR Journal, 57, 347, 10.1093/ilar/ilw029

Ostaszewska T., 2016, Histopathological effects of silver and copper nanoparticles on the epidermis, gills, and liver of Siberian sturgeon, Environmental Science and Pollution Research, 23, 1621, 10.1007/s11356-015-5391-9

Pecoraro R., 2017, Evaluation of chronic nanosilver toxicity to adult zebrafish, Frontiers in Physiology, 8, 1011, 10.3389/fphys.2017.01011

Pecoraro R., 2019, Evaluation of the effects of silver nanoparticles on Danio rerio cornea: Morphological and ultrastructural analysis, Microscopy Research and Technique, 82, 1297, 10.1002/jemt.23280

Rahman M. F., 2009, Expression of genes related to oxidative stress in the mouse brain after exposure to silver‐25 nanoparticles, Toxicology Letters, 187, 15, 10.1016/j.toxlet.2009.01.020

Salari Joo H., 2013, Bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss): Influence of concentration and salinity, Aquatic Toxicology, 140, 398, 10.1016/j.aquatox.2013.07.003

Sayed A. E.‐D. H., 2020, Histopathological and histochemical effects of silver nanoparticles on the gills and muscles of African catfish (Clarias garepinus), Scientific African, 7, 10.1016/j.sciaf.2019.e00230

Singh A. V., 2019, Review of emerging concepts in nanotoxicology: Opportunities and challenges for safer nanomaterial design, Toxicology Mechanisms and Methods, 29, 378, 10.1080/15376516.2019.1566425

Temizel‐Sekeryan S., 2020, Global environmental impacts of silver nanoparticle production methods supported by life cycle assessment, Resources, Conservation and Recycling, 156, 104676, 10.1016/j.resconrec.2019.104676

Topuz O. K., 2021, Characterization and emulsifying properties of aquatic lecithins isolated from processing discard of rainbow trout fish and its eggs, Food Chemistry, 339, 128103, 10.1016/j.foodchem.2020.128103

Van de Walle A., 2020, Magnetic nanoparticles in regenerative medicine: What of their fate and impact in stem cells?, Materials Today Nano, 100084

Xiang Q.‐Q., 2020, Proteomic profiling reveals the differential toxic responses of gills of common carp exposed to nanosilver and silver nitrate, Journal of Hazardous Materials, 394, 122562, 10.1016/j.jhazmat.2020.122562

Yin J., 2021, Pretreatment with selenium prevented the accumulation of hexavalent chromium in rainbow trout (Oncorhynchus mykiss) and reduced the potential health risk of fish consumption, Food Control, 122, 107817, 10.1016/j.foodcont.2020.107817

Yu S., 2014, Highly dynamic PVP‐coated silver nanoparticles in aquatic environments: Chemical and morphology change induced by oxidation of Ag0 and reduction of Ag+, Environmental Science & Technology, 48, 403, 10.1021/es404334a

Zhao C., 2011, Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna, Environmental Toxicology and Chemistry, 30, 885, 10.1002/etc.451