Microporous Metal-Organic Framework Materials for Gas Separation

Chem - Tập 6 Số 2 - Trang 337-363 - 2020
Rui‐Biao Lin1, Shengchang Xiang2, Wei Zhou3, Banglin Chen1
1Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698, USA
2College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China
3NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Sholl, 2016, Seven chemical separations to change the world, Nature, 532, 435, 10.1038/532435a

Chu, 2016, The path towards sustainable energy, Nat. Mater., 16, 16, 10.1038/nmat4834

Wang, 2017, Beyond equilibrium: metal–organic frameworks for molecular sieving and kinetic gas separation, Cryst. Growth Des., 17, 2291, 10.1021/acs.cgd.7b00287

Kuznicki, 2001, A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules, Nature, 412, 720, 10.1038/35089052

Kondo, 1997, Three-dimensional framework with channeling cavities for small molecules: {[M2(4, 4′-bpy)3(NO3)4]·xH2O}n (M = Co, Ni, Zn), Angew. Chem. Int. Ed. Engl., 36, 1725, 10.1002/anie.199717251

Li, 1998, Establishing microporosity in open metal−organic frameworks: gas sorption isotherms for Zn(BDC) (BDC = 1,4-Benzenedicarboxylate), J. Am. Chem. Soc., 120, 8571, 10.1021/ja981669x

Li, 1999, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature, 402, 276, 10.1038/46248

Chui, 1999, A chemically functionalizable nanoporous material, Science, 283, 1148, 10.1126/science.283.5405.1148

Furukawa, 2013, The chemistry and applications of metal-organic frameworks, Science, 341, 1230444, 10.1126/science.1230444

Moghadam, 2017, Development of a Cambridge Structural Database Subset: A collection of metal–organic frameworks for past, present, and future, Chem. Mater., 29, 2618, 10.1021/acs.chemmater.7b00441

Myers, 1965, Thermodynamics of mixed-gas adsorption, AIChE J., 11, 121, 10.1002/aic.690110125

Eddaoudi, 2002, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage, Science, 295, 469, 10.1126/science.1067208

Chen, 2001, Interwoven metal-organic framework on a periodic minimal surface with extra-large pores, Science, 291, 1021, 10.1126/science.1056598

Chen, 2000, Cu2(ATC)·6H2O: design of open metal sites in porous metal−organic crystals (ATC: 1,3,5,7-adamantane tetracarboxylate), J. Am. Chem. Soc., 122, 11559, 10.1021/ja003159k

Wang, 2007, Postsynthetic covalent modification of a neutral metal−organic framework, J. Am. Chem. Soc., 129, 12368, 10.1021/ja074366o

Min Wang, 2002, Metallo-organic molecular sieve for gas separation and purification, Micropor. Mesopor. Mater., 55, 217, 10.1016/S1387-1811(02)00405-5

Chen, 2006, A microporous metal–organic framework for gas-chromatographic separation of alkanes, Angew. Chem. Int. Ed. Engl., 45, 1390, 10.1002/anie.200502844

Mueller, 2006, Metal–organic frameworks—prospective industrial applications, J. Mater. Chem., 16, 626, 10.1039/B511962F

Matsuda, 2005, Highly controlled acetylene accommodation in a metal-organic microporous material, Nature, 436, 238, 10.1038/nature03852

Rowsell, 2005, Gas adsorption sites in a large-pore metal-organic framework, Science, 309, 1350, 10.1126/science.1113247

Li, 2009, Selective gas adsorption and separation in metal-organic frameworks, Chem. Soc. Rev., 38, 1477, 10.1039/b802426j

Sumida, 2012, Carbon dioxide capture in metal–organic frameworks, Chem. Rev., 112, 724, 10.1021/cr2003272

Adil, 2017, Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship, Chem. Soc. Rev., 46, 3402, 10.1039/C7CS00153C

Bao, 2016, Potential of microporous metal-organic frameworks for separation of hydrocarbon mixtures, Energy Environ. Sci., 9, 3612, 10.1039/C6EE01886F

Kim, 2019, Hydrogen isotope separation in confined nanospaces: carbons, zeolites, metal–organic frameworks, and covalent organic frameworks, Adv. Mater., 31, e1805293, 10.1002/adma.201805293

Banerjee, 2018, Xenon gas separation and storage using metal-organic frameworks, Chem, 4, 466, 10.1016/j.chempr.2017.12.025

Barnett, 2019, Recent progress towards light hydrocarbon separations using metal-organic frameworks, J. Trends Chem., 1, 159, 10.1016/j.trechm.2019.02.012

Hönicke, 2018, Balancing mechanical stability and ultrahigh porosity in crystalline framework materials, Angew. Chem. Int. Ed. Engl., 57, 13780, 10.1002/anie.201808240

Huang, 2006, Ligand-directed strategy for zeolite-type metal–organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies, Angew. Chem. Int. Ed. Engl., 45, 1557, 10.1002/anie.200503778

Park, 2006, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proc. Natl. Acad. Sci. USA, 103, 10186, 10.1073/pnas.0602439103

Rosi, 2005, Rod packings and metal−organic frameworks constructed from rod-shaped secondary building units, J. Am. Chem. Soc., 127, 1504, 10.1021/ja045123o

Cavka, 2008, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability, J. Am. Chem. Soc., 130, 13850, 10.1021/ja8057953

Herm, 2013, Separation of hexane isomers in a metal-organic framework with triangular channels, Science, 340, 960, 10.1126/science.1234071

Huang, 2003, Zn(bim)2, Chin. Sci. Bull., 48, 1531

Serre, 2002, Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or Cr(III)(OH) x [O(2)C-C(6)H(4)-CO(2)] x [HO(2)C-C(6)H(4)-CO(2)H](x) x H(2)O(y), J. Am. Chem. Soc., 124, 13519, 10.1021/ja0276974

Chen, 2005, High H2 adsorption in a microporous metal–organic framework with open metal sites, Angew. Chem. Int. Ed. Engl., 44, 4745, 10.1002/anie.200462787

Férey, 2005, A chromium terephthalate-based solid with unusually large pore volumes and surface area, Science, 309, 2040, 10.1126/science.1116275

Morris, 2012, Synthesis, structure, and metalation of two new highly porous zirconium metal–organic frameworks, Inorg. Chem., 51, 6443, 10.1021/ic300825s

Li, 2014, A porous metal–organic framework with dynamic pyrimidine groups exhibiting record high methane storage working capacity, J. Am. Chem. Soc., 136, 6207, 10.1021/ja501810r

Surblé, 2006, A new isoreticular class of metal-organic-frameworks with the MIL-88 topology, Chem. Commun. (Camb.), 3, 284, 10.1039/B512169H

Chun, 2005, Synthesis, X-ray crystal structures, and gas sorption properties of pillared square grid Nets based on paddle-wheel motifs: implications for hydrogen storage in porous materials, Chemistry, 11, 3521, 10.1002/chem.200401201

Yang, 2014, Supramolecular binding and separation of hydrocarbons within a functionalized porous metal–organic framework, Nat. Chem., 7, 121, 10.1038/nchem.2114

Mondloch, 2013, Vapor-phase metalation by atomic layer deposition in a metal–organic framework, J. Am. Chem. Soc., 135, 10294, 10.1021/ja4050828

Biswas, 2009, A cubic coordination framework constructed from benzobistriazolate ligands and zinc ions having selective gas sorption properties, Dalton Trans., 33, 6487, 10.1039/b904280f

Liao, 2017, Controlling guest conformation for efficient purification of butadiene, Science, 356, 1193, 10.1126/science.aam7232

Furukawa, 2014, Water adsorption in porous metal–organic frameworks and related materials, J. Am. Chem. Soc., 136, 4369, 10.1021/ja500330a

Chae, 2004, A route to high surface area, porosity and inclusion of large molecules in crystals, Nature, 427, 523, 10.1038/nature02311

Deng, 2012, Large-pore apertures in a series of metal-organic frameworks, Science, 336, 1018, 10.1126/science.1220131

Biswas, 2013, New functionalized metal–organic frameworks MIL-47-X (X = −Cl, −Br, −CH3, −CF3, −OH, −OCH3): synthesis, characterization, and CO2 adsorption properties, J. Phys. Chem. C, 117, 22784, 10.1021/jp406835n

Zhang, 2012, Geometry analysis and systematic synthesis of highly porous isoreticular frameworks with a unique topology, Nat. Commun., 3, 642, 10.1038/ncomms1654

Culp, 2013, Screening Hofmann compounds as CO2 sorbents: nontraditional synthetic route to over 40 different pore-functionalized and flexible pillared Cyanonickelates, Inorg. Chem., 52, 4205, 10.1021/ic301893p

Heering, 2013, Bifunctional pyrazolate–carboxylate ligands for isoreticular cobalt and zinc MOF-5 analogs with magnetic analysis of the {Co4(μ4-O)} node, CrystEngComm., 15, 9757, 10.1039/c3ce41426d

Wang, 2014, Synthesis and characterization of metal–organic Framework-74 containing 2, 4, 6, 8, and 10 different metals, Inorg. Chem., 53, 5881, 10.1021/ic500434a

Wade, 2012, Investigation of the synthesis, activation, and isosteric heats of CO2 adsorption of the isostructural series of metal–organic frameworks M3(BTC)2 (M = Cr, Fe, Ni, Cu, Mo, Ru), Dalton Trans., 41, 7931, 10.1039/c2dt30372h

Gándara, 2012, Porous, conductive metal-triazolates and their structural elucidation by the charge-flipping method, Chemistry, 18, 10595, 10.1002/chem.201103433

Elsaidi, 2015, Hydrophobic pillared square grids for selective removal of CO2 from simulated flue gas, Chem. Commun. (Camb.), 51, 15530, 10.1039/C5CC06577A

Nugent, 2013, Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation, Nature, 495, 80, 10.1038/nature11893

Burd, 2012, Highly selective carbon dioxide uptake by [Cu(bpy-n)2(SiF6)] (bpy-1 = 4,4′-bipyridine; bpy-2 = 1,2-bis(4-pyridyl)ethene), J. Am. Chem. Soc., 134, 3663, 10.1021/ja211340t

Cui, 2016, Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene, Science, 353, 141, 10.1126/science.aaf2458

Li, 2017, An ideal molecular sieve for acetylene removal from ethylene with record selectivity and productivity, Adv. Mater., 29, 1704210, 10.1002/adma.201704210

Cui, 2017, Ultrahigh and selective SO2 uptake in inorganic anion-pillared hybrid porous materials, Adv. Mater., 29, 1606929, 10.1002/adma.201606929

Yang, 2018, A single-molecule propyne TRAP: highly efficient removal of propyne from propylene with anion-pillared ultramicroporous materials, Adv. Mater., 30, 1705374, 10.1002/adma.201705374

Banerjee, 2009, Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties, J. Am. Chem. Soc., 131, 3875, 10.1021/ja809459e

Li, 2013, Systematic modulation and enhancement of CO2 : N2 selectivity and water stability in an isoreticular series of bio-MOF-11 analogues, Chem. Sci., 4, 1746, 10.1039/c3sc22207a

Eum, 2015, Highly tunable molecular sieving and adsorption properties of mixed-linker zeolitic imidazolate frameworks, J. Am. Chem. Soc., 137, 4191, 10.1021/jacs.5b00803

Nugent, 2013, Enhancement of CO2 selectivity in a pillared pcu MOM platform through pillar substitution, Chem. Commun. (Camb.), 49, 1606, 10.1039/c3cc37695h

Cadiau, 2017, Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration, Science, 356, 731, 10.1126/science.aam8310

Zhang, 2019, A microporous metal-organic framework supramolecularly assembled from a CuII Dodecaborate cluster complex for selective gas separation, Angew. Chem. Int. Ed. Engl., 58, 8145, 10.1002/anie.201903600

Cadiau, 2016, A metal-organic framework–based splitter for separating propylene from propane, Science, 353, 137, 10.1126/science.aaf6323

Belmabkhout, 2018, Natural gas upgrading using a fluorinated MOF with tuned H2S and CO2 adsorption selectivity, Nat. Energy, 3, 1059, 10.1038/s41560-018-0267-0

Zhang, 2017, Sorting of C4 olefins with interpenetrated hybrid ultramicroporous materials by combining molecular recognition and size-sieving, Angew. Chem. Int. Ed. Engl., 56, 16282, 10.1002/anie.201708769

Shekhah, 2014, Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture, Nat. Commun., 5, 4228, 10.1038/ncomms5228

Scott, 2016, Crystal engineering of a family of hybrid ultramicroporous materials based upon interpenetration and dichromate linkers, Chem. Sci., 7, 5470, 10.1039/C6SC01385F

Hu, 2016, Rationally tuning the separation performances of [M3(HCOO)6] frameworks for CH4/N2 mixtures via metal substitution, Micropor. Mesopor. Mater, 225, 456, 10.1016/j.micromeso.2016.01.030

Wang, 2014, The first example of commensurate adsorption of atomic gas in a MOF and effective separation of xenon from other noble gases, Chem. Sci., 5, 620, 10.1039/C3SC52348A

Zhang, 2019, Low-cost and high-performance microporous metal–organic framework for separation of acetylene from Carbon dioxide, ACS Sustainable Chem. Eng, 7, 1667, 10.1021/acssuschemeng.8b05431

Bao, 2018, Molecular Sieving of ethane from ethylene through the molecular cross-section size differentiation in gallate-based metal–organic frameworks, Angew. Chem. Int. Ed. Engl., 57, 16020, 10.1002/anie.201808716

Maji, 2007, A flexible interpenetrating coordination framework with a bimodal porous functionality, Nat. Mater., 6, 142, 10.1038/nmat1827

Bajpai, 2017, The role of weak interactions in controlling the mode of interpenetration in hybrid ultramicroporous materials, Chem. Commun. (Camb.), 53, 3978, 10.1039/C6CC10217D

Bastin, 2008, A microporous metal−organic framework for separation of CO2/N2 and CO2/CH4 by fixed-bed adsorption, J. Phys. Chem. C, 112, 1575, 10.1021/jp077618g

Ma, 2008, A coordinatively linked Yb metal–organic framework demonstrates high thermal stability and uncommon gas-adsorption selectivity, Angew. Chem. Int. Ed. Engl., 47, 4130, 10.1002/anie.200800312

Jiang, 2018, Controlling pore shape and size of interpenetrated anion-pillared ultramicroporous materials enables molecular sieving of CO2 combined with ultrahigh uptake capacity, ACS Appl. Mater. Interfaces, 10, 16628, 10.1021/acsami.8b03358

Li, 2018, A metal–organic framework with suitable pore size and specific functional sites for the removal of trace propyne from propylene, Angew. Chem. Int. Ed. Engl., 57, 15183, 10.1002/anie.201809869

O’Nolan, 2018, Impact of partial interpenetration in a hybrid ultramicroporous material on C2H2/C2H4 separation performance, Chem. Commun. (Camb.), 54, 3488, 10.1039/C8CC01627E

Liang, 2019, A tailor-made interpenetrated MOF with exceptional carbon-capture performance from flue gas, Chem, 5, 950, 10.1016/j.chempr.2019.02.007

Li, 2019, Microporous metal–organic framework with dual functionalities for efficient separation of acetylene from light hydrocarbon mixtures, ACS Sustainable Chem. Eng., 7, 4897, 10.1021/acssuschemeng.8b05480

Chen, 2016, Benchmark C2H2/CO2 and CO2/C2H2 separation by two closely related hybrid ultramicroporous materials, Chem, 1, 753, 10.1016/j.chempr.2016.10.009

Elsaidi, 2014, Putting the squeeze on CH4 and CO2 through control over interpenetration in diamondoid Nets, J. Am. Chem. Soc., 136, 5072, 10.1021/ja500005k

Zheng, 2010, Pore space partition and charge separation in cage-within-cage indium−organic frameworks with high CO2 uptake, J. Am. Chem. Soc., 132, 17062, 10.1021/ja106903p

Zhao, 2015, Pore space partition by symmetry-matching regulated ligand insertion and dramatic tuning on Carbon dioxide uptake, J. Am. Chem. Soc., 137, 1396, 10.1021/ja512137t

Zhai, 2017, Pore space partition in metal–organic frameworks, Acc. Chem. Res., 50, 407, 10.1021/acs.accounts.6b00526

Tan, 2011, Pore partition effect on gas sorption properties of an anionic metal–organic framework with exposed Cu2+ coordination sites, Chem. Commun. (Camb.), 47, 10647, 10.1039/c1cc14118j

Ling, 2013, Enhancing CO2 adsorption of a Zn-phosphonocarboxylate framework by pore space partitions, Chem. Commun. (Camb.), 49, 78, 10.1039/C2CC37174J

Zhai, 2016, An ultra-tunable platform for molecular engineering of high-performance crystalline porous materials, Nat. Commun., 7, 13645, 10.1038/ncomms13645

Ye, 2019, Pore space partition within a metal–organic framework for highly efficient C2H2/CO2 separation, J. Am. Chem. Soc., 141, 4130, 10.1021/jacs.9b00232

Kim, 2017, Exploiting diffusion barrier and chemical affinity of metal–organic frameworks for efficient hydrogen isotope separation, J. Am. Chem. Soc., 139, 15135, 10.1021/jacs.7b07925

Hazra, 2017, Separation/purification of ethylene from an acetylene/ethylene mixture in a pillared-layer porous metal–organic framework, Chem. Commun. (Camb.), 53, 4907, 10.1039/C7CC00726D

Li, 2009, Zeolitic imidazolate frameworks for kinetic separation of propane and propene, J. Am. Chem. Soc., 131, 10368, 10.1021/ja9039983

Chen, 2016, Tuning pore size in square-lattice coordination networks for size-selective sieving of CO2, Angew. Chem. Int. Ed. Engl., 55, 10268, 10.1002/anie.201603934

Lin, 2018, Molecular sieving of ethylene from ethane using a rigid metal–organic framework, Nat. Mater., 17, 1128, 10.1038/s41563-018-0206-2

Wang, 2018, Tailor-made microporous metal–organic frameworks for the full separation of propane from propylene Through selective size exclusion, Adv. Mater., 30, e1805088, 10.1002/adma.201805088

Pan, 2006, Separation of hydrocarbons with a microporous metal–organic framework, Angew. Chem. Int. Ed. Engl., 45, 616, 10.1002/anie.200503503

Maes, 2010, Separation of C5-hydrocarbons on microporous materials: complementary performance of MOFs and zeolites, J. Am. Chem. Soc., 132, 2284, 10.1021/ja9088378

Assen, 2015, Ultra-tuning of the rare-earth fcu-MOF aperture size for selective molecular exclusion of branched paraffins, Angew. Chem. Int. Ed. Engl., 54, 14353, 10.1002/anie.201506345

Wang, 2018, One-of-a-kind: a microporous metal–organic framework capable of adsorptive separation of linear, mono- and di-branched alkane isomers via temperature- and adsorbate-dependent molecular sieving, Energy Environ. Sci., 11, 1226, 10.1039/C8EE00459E

Humphrey, 2007, Porous cobalt(II) organic frameworks with corrugated walls: structurally robust gas-sorption materials, Angew. Chem. Int. Ed. Engl., 46, 272, 10.1002/anie.200601627

Wriedt, 2012, Low-energy selective capture of carbon dioxide by a pre-designed elastic single-molecule trap, Angew. Chem. Int. Ed. Engl., 51, 9804, 10.1002/anie.201202992

Du, 2014, Divergent kinetic and thermodynamic hydration of a porous Cu(II) coordination polymer with exclusive CO2 sorption selectivity, J. Am. Chem. Soc., 136, 10906, 10.1021/ja506357n

Li, 2019, A robust squarate-based metal–organic framework demonstrates record-high affinity and selectivity for xenon over krypton, J. Am. Chem. Soc., 141, 9358, 10.1021/jacs.9b03422

Li, 2013, Design and preparation of a core–shell metal–organic framework for selective CO2 capture, J. Am. Chem. Soc., 135, 9984, 10.1021/ja403008j

Park, 2012, Reversible alteration of CO2 adsorption upon photochemical or thermal treatment in a metal–organic framework, J. Am. Chem. Soc., 134, 99, 10.1021/ja209197f

Lin, 2017, Optimized separation of acetylene from carbon dioxide and ethylene in a microporous material, J. Am. Chem. Soc., 139, 8022, 10.1021/jacs.7b03850

Li, 2017, Flexible–robust metal–organic framework for efficient removal of propyne from propylene, J. Am. Chem. Soc., 139, 7733, 10.1021/jacs.7b04268

Liao, 2015, Efficient purification of ethene by an ethane-trapping metal-organic framework, Nat. Commun., 6, 8697, 10.1038/ncomms9697

Vaidhyanathan, 2010, Direct observation and quantification of CO2 binding within an amine-functionalized nanoporous solid, Science, 330, 650, 10.1126/science.1194237

Trickett, 2017, The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion, Nat. Rev. Mater., 2, 17045, 10.1038/natrevmats.2017.45

Yu, 2017, CO2 capture and separations using MOFs: computational and experimental studies, Chem. Rev., 117, 9674, 10.1021/acs.chemrev.6b00626

Hayashi, 2007, Zeolite A imidazolate frameworks, Nat. Mater., 6, 501, 10.1038/nmat1927

Lin, 2010, Nonclassical active site for enhanced gas sorption in porous coordination polymer, J. Am. Chem. Soc., 132, 6654, 10.1021/ja1009635

Liao, 2012, Strong and dynamic CO2 sorption in a flexible porous framework possessing guest chelating claws, J. Am. Chem. Soc., 134, 17380, 10.1021/ja3073512

Mohamed, 2012, Highly selective CO2 uptake in uninodal 6-connected “mmo” nets based upon MO42– (M = Cr, Mo) pillars, J. Am. Chem. Soc., 134, 19556, 10.1021/ja309452y

Lin, 2018, Boosting ethane/ethylene separation within isoreticular ultramicroporous metal–organic frameworks, J. Am. Chem. Soc., 140, 12940, 10.1021/jacs.8b07563

Gassensmith, 2011, Strong and reversible binding of carbon dioxide in a green metal–organic framework, J. Am. Chem. Soc., 133, 15312, 10.1021/ja206525x

Li, 2019, Inverse adsorption separation of CO2/C2H2 mixture in cyclodextrin-based metal–organic frameworks, ACS Appl. Mater. Interfaces, 11, 2543, 10.1021/acsami.8b19590

You, 2018, Tuning binding tendencies of small molecules in metal–organic frameworks with open metal sites by metal substitution and linker functionalization, J. Phys. Chem. C, 122, 27486, 10.1021/acs.jpcc.8b08855

Murray, 2010, Highly-selective and reversible O2 binding in Cr3(1,3,5-benzenetricarboxylate)2, J. Am. Chem. Soc., 132, 7856, 10.1021/ja1027925

Britt, 2008, Metal-organic frameworks with high capacity and selectivity for harmful gases, Proc. Natl. Acad. Sci. USA, 105, 11623, 10.1073/pnas.0804900105

Caskey, 2008, Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores, J. Am. Chem. Soc., 130, 10870, 10.1021/ja8036096

Kong, 2012, CO2 dynamics in a metal–organic framework with open metal sites, J. Am. Chem. Soc., 134, 14341, 10.1021/ja306822p

Bloch, 2011, Selective binding of O2 over N2 in a redox–active metal–organic framework with open iron(II) coordination sites, J. Am. Chem. Soc., 133, 14814, 10.1021/ja205976v

Bao, 2011, Adsorption of ethane, ethylene, propane, and propylene on a magnesium-based metal–organic framework, Langmuir, 27, 13554, 10.1021/la2030473

Bae, 2012, High propene/propane selectivity in isostructural metal–organic frameworks with high densities of open metal sites, Angew. Chem. Int. Ed. Engl., 51, 1857, 10.1002/anie.201107534

He, 2012, Metal–organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons, Energy Environ. Sci., 5, 9107, 10.1039/c2ee22858k

Bloch, 2012, Hydrocarbon separations in a metal-organic framework with open iron(II) coordination sites, Science, 335, 1606, 10.1126/science.1217544

Geier, 2013, Selective adsorption of ethylene over ethane and propylene over propane in the metal–organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Zn), Chem. Sci., 4, 2054, 10.1039/c3sc00032j

Bachman, 2017, M2(m-dobdc) (M = Mn, Fe, Co, Ni) metal–organic frameworks as highly selective, high-capacity adsorbents for olefin/paraffin separations, J. Am. Chem. Soc., 139, 15363, 10.1021/jacs.7b06397

Bachman, 2018, Enabling alternative ethylene production through its selective adsorption in the metal–organic framework Mn2(m-dobdc), Energy Environ. Sci., 11, 2423, 10.1039/C8EE01332B

Bloch, 2014, Reversible CO binding enables tunable CO/H2 and CO/N2 separations in metal–organic frameworks with exposed divalent metal cations, J. Am. Chem. Soc., 136, 10752, 10.1021/ja505318p

Lee, 2015, Small-molecule adsorption in open-site metal–organic frameworks: a systematic density functional theory study for rational design, Chem. Mater., 27, 668, 10.1021/cm502760q

Liao, 2014, Drastic enhancement of catalytic activity via post-oxidation of a porous MnII triazolate framework, Chemistry, 20, 11303, 10.1002/chem.201403123

Rieth, 2018, Tunable metal–organic frameworks enable high-efficiency cascaded adsorption heat pumps, J. Am. Chem. Soc., 140, 17591, 10.1021/jacs.8b09655

Runčevski, 2016, Adsorption of two gas molecules at a single metal site in a metal–organic framework, Chem. Commun. (Camb.), 52, 8251, 10.1039/C6CC02494G

Luo, 2016, UTSA-74: a MOF-74 isomer with two accessible binding sites per metal center for highly selective gas separation, J. Am. Chem. Soc., 138, 5678, 10.1021/jacs.6b02030

Yang, 2019, Ligand charge separation to build highly stable quasi-isomer of MOF-74-Zn, J. Am. Chem. Soc., 141, 9808, 10.1021/jacs.9b04432

Reed, 2017, A spin transition mechanism for cooperative adsorption in metal–organic frameworks, Nature, 550, 96, 10.1038/nature23674

Sato, 2014, Self-accelerating CO sorption in a soft nanoporous crystal, Science, 343, 167, 10.1126/science.1246423

He, 2014, Multifunctional metal–organic frameworks constructed from meta-benzenedicarboxylate units, Chem. Soc. Rev., 43, 5618, 10.1039/C4CS00041B

Reed, 2016, Reversible CO scavenging via adsorbate-dependent spin state transitions in an iron(II)–triazolate metal–organic framework, J. Am. Chem. Soc., 138, 5594, 10.1021/jacs.6b00248

Xiao, 2016, Selective, tunable O2 binding in cobalt(II)–Triazolate/Pyrazolate metal–organic frameworks, J. Am. Chem. Soc., 138, 7161, 10.1021/jacs.6b03680

Yoon, 2017, Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites, Nat. Mater., 16, 526, 10.1038/nmat4825

Li, 2013, Porous materials with pre-designed single-molecule traps for CO2 selective adsorption, Nat. Commun., 4, 1538, 10.1038/ncomms2552

Niu, 2019, A metal–organic framework based methane nano-trap for the capture of coal-mine methane, Angew. Chem. Int. Ed. Engl., 58, 10138, 10.1002/anie.201904507

Chen, 2008, Surface interactions and quantum kinetic molecular sieving for H2 and D2 adsorption on a mixed metal−organic framework material, J. Am. Chem. Soc., 130, 6411, 10.1021/ja710144k

Xiang, 2011, Rationally tuned micropores within enantiopure metal-organic frameworks for highly selective separation of acetylene and ethylene, Nat. Commun., 2, 204, 10.1038/ncomms1206

Peng, 2018, Robust ultramicroporous metal–organic frameworks with benchmark affinity for acetylene, Angew. Chem. Int. Ed. Engl., 57, 10971, 10.1002/anie.201806732

Zhang, 2015, Biomimicry in metal–organic materials, Coord. Chem. Rev., 293–294, 327, 10.1016/j.ccr.2014.05.031

Demessence, 2009, Strong CO2 binding in a water-stable, triazolate-bridged metal−organic framework functionalized with ethylenediamine, J. Am. Chem. Soc., 131, 8784, 10.1021/ja903411w

McDonald, 2011, Enhanced carbon dioxide capture upon incorporation of N,N′-dimethylethylenediamine in the metal–organic framework CuBTTri, Chem. Sci., 2, 2022, 10.1039/c1sc00354b

McDonald, 2012, Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal–organic framework mmen-Mg2(dobpdc), J. Am. Chem. Soc., 134, 7056, 10.1021/ja300034j

McDonald, 2015, Cooperative insertion of CO2 in diamine-appended metal-organic frameworks, Nature, 519, 303, 10.1038/nature14327

Siegelman, 2017, Controlling cooperative CO2 adsorption in diamine-appended Mg2(dobpdc) metal–organic frameworks, J. Am. Chem. Soc., 139, 10526, 10.1021/jacs.7b05858

Liao, 2016, Putting an ultrahigh concentration of amine groups into a metal–organic framework for CO2 capture at low pressures, Chem. Sci., 7, 6528, 10.1039/C6SC00836D

Liao, 2015, Monodentate hydroxide as a super strong yet reversible active site for CO2 capture from high-humidity flue gas, Energy Environ. Sci., 8, 1011, 10.1039/C4EE02717E

Bien, 2018, Bioinspired metal–organic framework for trace CO2 capture, J. Am. Chem. Soc., 140, 12662, 10.1021/jacs.8b06109

Wright, 2018, A structural mimic of carbonic anhydrase in a metal-organic framework, Chem, 4, 2894, 10.1016/j.chempr.2018.09.011

Li, 2018, Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites, Science, 362, 443, 10.1126/science.aat0586

Lu, 2018, Direct observation of supramolecular binding of light hydrocarbons in vanadium(III) and (IV) metal–organic framework materials, Chem. Sci., 9, 3401, 10.1039/C8SC00330K

Bloch, 2010, Metal insertion in a microporous metal−organic framework lined with 2,2′-bipyridine, J. Am. Chem. Soc., 132, 14382, 10.1021/ja106935d

Chang, 2015, Immobilization of Ag(I) into a metal–organic framework with –SO3H sites for highly selective olefin–paraffin separation at room temperature, Chem. Commun. (Camb.), 51, 2859, 10.1039/C4CC09679G

Wang, 2019, Alternatives to cryogenic distillation: advanced porous materials in adsorptive light olefin/paraffin separations, Small, 15, e1900058, 10.1002/smll.201900058

Fracaroli, 2014, Metal–organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water, J. Am. Chem. Soc., 136, 8863, 10.1021/ja503296c

Liao, 2015, Self-catalysed aerobic oxidization of organic linker in porous crystal for on-demand regulation of sorption behaviours, Nat. Commun., 6, 6350, 10.1038/ncomms7350

Wang, 2019, Selective aerobic oxidation of a metal–organic framework boosts thermodynamic and kinetic propylene/propane selectivity, Angew. Chem. Int. Ed. Engl., 58, 7692, 10.1002/anie.201902209

Xiang, 2012, Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions, Nat. Commun., 3, 954, 10.1038/ncomms1956

Hu, 2015, Microporous metal–organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures, Nat. Commun., 6, 7328, 10.1038/ncomms8328

Wen, 2018, Fine-tuning of nano-traps in a stable metal–organic framework for highly efficient removal of propyne from propylene, J. Mater. Chem. A, 6, 6931, 10.1039/C8TA00598B

Howarth, 2016, Chemical, thermal and mechanical stabilities of metal–organic frameworks, Nat. Rev. Mater., 1, 15018, 10.1038/natrevmats.2015.18

Rubio-Martinez, 2017, New synthetic routes towards MOF production at scale, Chem. Soc. Rev., 46, 3453, 10.1039/C7CS00109F

Denny, 2016, Metal–organic frameworks for membrane-based separations, Nat. Rev. Mater., 1, 16078, 10.1038/natrevmats.2016.78

Zhou, 2019, Intermediate-sized molecular sieving of styrene from larger and smaller analogues, Nat. Mater., 18, 994, 10.1038/s41563-019-0427-z

Horike, 2009, Soft porous crystals, Nat. Chem., 1, 695, 10.1038/nchem.444

Krause, 2016, A pressure-amplifying framework material with negative gas adsorption transitions, Nature, 532, 348, 10.1038/nature17430

Schneemann, 2014, Flexible metal–organic frameworks, Chem. Soc. Rev., 43, 6062, 10.1039/C4CS00101J

Zhang, 2008, Exceptional framework flexibility and sorption behavior of a multifunctional porous cuprous triazolate framework, J. Am. Chem. Soc., 130, 6010, 10.1021/ja800550a

Fernandez, 2012, Switching Kr/Xe selectivity with temperature in a metal–organic framework, J. Am. Chem. Soc., 134, 9046, 10.1021/ja302071t

Carrington, 2017, Solvent-switchable continuous-breathing behaviour in a diamondoid metal–organic framework and its influence on CO2 versus CH4 selectivity, Nat. Chem., 9, 882, 10.1038/nchem.2747

Gücüyener, 2010, Ethane/ethene separation turned on its head: selective ethane adsorption on the metal−organic framework ZIF-7 through a gate-opening mechanism, J. Am. Chem. Soc., 132, 17704, 10.1021/ja1089765

Gu, 2019, Design and control of gas diffusion process in a nanoporous soft crystal, Science, 363, 387, 10.1126/science.aar6833