Microporous Metal-Organic Framework Materials for Gas Separation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Wang, 2017, Beyond equilibrium: metal–organic frameworks for molecular sieving and kinetic gas separation, Cryst. Growth Des., 17, 2291, 10.1021/acs.cgd.7b00287
Kuznicki, 2001, A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules, Nature, 412, 720, 10.1038/35089052
Kondo, 1997, Three-dimensional framework with channeling cavities for small molecules: {[M2(4, 4′-bpy)3(NO3)4]·xH2O}n (M = Co, Ni, Zn), Angew. Chem. Int. Ed. Engl., 36, 1725, 10.1002/anie.199717251
Li, 1998, Establishing microporosity in open metal−organic frameworks: gas sorption isotherms for Zn(BDC) (BDC = 1,4-Benzenedicarboxylate), J. Am. Chem. Soc., 120, 8571, 10.1021/ja981669x
Li, 1999, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature, 402, 276, 10.1038/46248
Chui, 1999, A chemically functionalizable nanoporous material, Science, 283, 1148, 10.1126/science.283.5405.1148
Furukawa, 2013, The chemistry and applications of metal-organic frameworks, Science, 341, 1230444, 10.1126/science.1230444
Moghadam, 2017, Development of a Cambridge Structural Database Subset: A collection of metal–organic frameworks for past, present, and future, Chem. Mater., 29, 2618, 10.1021/acs.chemmater.7b00441
Eddaoudi, 2002, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage, Science, 295, 469, 10.1126/science.1067208
Chen, 2001, Interwoven metal-organic framework on a periodic minimal surface with extra-large pores, Science, 291, 1021, 10.1126/science.1056598
Chen, 2000, Cu2(ATC)·6H2O: design of open metal sites in porous metal−organic crystals (ATC: 1,3,5,7-adamantane tetracarboxylate), J. Am. Chem. Soc., 122, 11559, 10.1021/ja003159k
Wang, 2007, Postsynthetic covalent modification of a neutral metal−organic framework, J. Am. Chem. Soc., 129, 12368, 10.1021/ja074366o
Min Wang, 2002, Metallo-organic molecular sieve for gas separation and purification, Micropor. Mesopor. Mater., 55, 217, 10.1016/S1387-1811(02)00405-5
Chen, 2006, A microporous metal–organic framework for gas-chromatographic separation of alkanes, Angew. Chem. Int. Ed. Engl., 45, 1390, 10.1002/anie.200502844
Mueller, 2006, Metal–organic frameworks—prospective industrial applications, J. Mater. Chem., 16, 626, 10.1039/B511962F
Matsuda, 2005, Highly controlled acetylene accommodation in a metal-organic microporous material, Nature, 436, 238, 10.1038/nature03852
Rowsell, 2005, Gas adsorption sites in a large-pore metal-organic framework, Science, 309, 1350, 10.1126/science.1113247
Li, 2009, Selective gas adsorption and separation in metal-organic frameworks, Chem. Soc. Rev., 38, 1477, 10.1039/b802426j
Sumida, 2012, Carbon dioxide capture in metal–organic frameworks, Chem. Rev., 112, 724, 10.1021/cr2003272
Adil, 2017, Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship, Chem. Soc. Rev., 46, 3402, 10.1039/C7CS00153C
Bao, 2016, Potential of microporous metal-organic frameworks for separation of hydrocarbon mixtures, Energy Environ. Sci., 9, 3612, 10.1039/C6EE01886F
Kim, 2019, Hydrogen isotope separation in confined nanospaces: carbons, zeolites, metal–organic frameworks, and covalent organic frameworks, Adv. Mater., 31, e1805293, 10.1002/adma.201805293
Banerjee, 2018, Xenon gas separation and storage using metal-organic frameworks, Chem, 4, 466, 10.1016/j.chempr.2017.12.025
Barnett, 2019, Recent progress towards light hydrocarbon separations using metal-organic frameworks, J. Trends Chem., 1, 159, 10.1016/j.trechm.2019.02.012
Hönicke, 2018, Balancing mechanical stability and ultrahigh porosity in crystalline framework materials, Angew. Chem. Int. Ed. Engl., 57, 13780, 10.1002/anie.201808240
Huang, 2006, Ligand-directed strategy for zeolite-type metal–organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies, Angew. Chem. Int. Ed. Engl., 45, 1557, 10.1002/anie.200503778
Park, 2006, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proc. Natl. Acad. Sci. USA, 103, 10186, 10.1073/pnas.0602439103
Rosi, 2005, Rod packings and metal−organic frameworks constructed from rod-shaped secondary building units, J. Am. Chem. Soc., 127, 1504, 10.1021/ja045123o
Cavka, 2008, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability, J. Am. Chem. Soc., 130, 13850, 10.1021/ja8057953
Herm, 2013, Separation of hexane isomers in a metal-organic framework with triangular channels, Science, 340, 960, 10.1126/science.1234071
Huang, 2003, Zn(bim)2, Chin. Sci. Bull., 48, 1531
Serre, 2002, Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or Cr(III)(OH) x [O(2)C-C(6)H(4)-CO(2)] x [HO(2)C-C(6)H(4)-CO(2)H](x) x H(2)O(y), J. Am. Chem. Soc., 124, 13519, 10.1021/ja0276974
Chen, 2005, High H2 adsorption in a microporous metal–organic framework with open metal sites, Angew. Chem. Int. Ed. Engl., 44, 4745, 10.1002/anie.200462787
Férey, 2005, A chromium terephthalate-based solid with unusually large pore volumes and surface area, Science, 309, 2040, 10.1126/science.1116275
Morris, 2012, Synthesis, structure, and metalation of two new highly porous zirconium metal–organic frameworks, Inorg. Chem., 51, 6443, 10.1021/ic300825s
Li, 2014, A porous metal–organic framework with dynamic pyrimidine groups exhibiting record high methane storage working capacity, J. Am. Chem. Soc., 136, 6207, 10.1021/ja501810r
Surblé, 2006, A new isoreticular class of metal-organic-frameworks with the MIL-88 topology, Chem. Commun. (Camb.), 3, 284, 10.1039/B512169H
Chun, 2005, Synthesis, X-ray crystal structures, and gas sorption properties of pillared square grid Nets based on paddle-wheel motifs: implications for hydrogen storage in porous materials, Chemistry, 11, 3521, 10.1002/chem.200401201
Yang, 2014, Supramolecular binding and separation of hydrocarbons within a functionalized porous metal–organic framework, Nat. Chem., 7, 121, 10.1038/nchem.2114
Mondloch, 2013, Vapor-phase metalation by atomic layer deposition in a metal–organic framework, J. Am. Chem. Soc., 135, 10294, 10.1021/ja4050828
Biswas, 2009, A cubic coordination framework constructed from benzobistriazolate ligands and zinc ions having selective gas sorption properties, Dalton Trans., 33, 6487, 10.1039/b904280f
Liao, 2017, Controlling guest conformation for efficient purification of butadiene, Science, 356, 1193, 10.1126/science.aam7232
Furukawa, 2014, Water adsorption in porous metal–organic frameworks and related materials, J. Am. Chem. Soc., 136, 4369, 10.1021/ja500330a
Chae, 2004, A route to high surface area, porosity and inclusion of large molecules in crystals, Nature, 427, 523, 10.1038/nature02311
Deng, 2012, Large-pore apertures in a series of metal-organic frameworks, Science, 336, 1018, 10.1126/science.1220131
Biswas, 2013, New functionalized metal–organic frameworks MIL-47-X (X = −Cl, −Br, −CH3, −CF3, −OH, −OCH3): synthesis, characterization, and CO2 adsorption properties, J. Phys. Chem. C, 117, 22784, 10.1021/jp406835n
Zhang, 2012, Geometry analysis and systematic synthesis of highly porous isoreticular frameworks with a unique topology, Nat. Commun., 3, 642, 10.1038/ncomms1654
Culp, 2013, Screening Hofmann compounds as CO2 sorbents: nontraditional synthetic route to over 40 different pore-functionalized and flexible pillared Cyanonickelates, Inorg. Chem., 52, 4205, 10.1021/ic301893p
Heering, 2013, Bifunctional pyrazolate–carboxylate ligands for isoreticular cobalt and zinc MOF-5 analogs with magnetic analysis of the {Co4(μ4-O)} node, CrystEngComm., 15, 9757, 10.1039/c3ce41426d
Wang, 2014, Synthesis and characterization of metal–organic Framework-74 containing 2, 4, 6, 8, and 10 different metals, Inorg. Chem., 53, 5881, 10.1021/ic500434a
Wade, 2012, Investigation of the synthesis, activation, and isosteric heats of CO2 adsorption of the isostructural series of metal–organic frameworks M3(BTC)2 (M = Cr, Fe, Ni, Cu, Mo, Ru), Dalton Trans., 41, 7931, 10.1039/c2dt30372h
Gándara, 2012, Porous, conductive metal-triazolates and their structural elucidation by the charge-flipping method, Chemistry, 18, 10595, 10.1002/chem.201103433
Elsaidi, 2015, Hydrophobic pillared square grids for selective removal of CO2 from simulated flue gas, Chem. Commun. (Camb.), 51, 15530, 10.1039/C5CC06577A
Nugent, 2013, Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation, Nature, 495, 80, 10.1038/nature11893
Burd, 2012, Highly selective carbon dioxide uptake by [Cu(bpy-n)2(SiF6)] (bpy-1 = 4,4′-bipyridine; bpy-2 = 1,2-bis(4-pyridyl)ethene), J. Am. Chem. Soc., 134, 3663, 10.1021/ja211340t
Cui, 2016, Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene, Science, 353, 141, 10.1126/science.aaf2458
Li, 2017, An ideal molecular sieve for acetylene removal from ethylene with record selectivity and productivity, Adv. Mater., 29, 1704210, 10.1002/adma.201704210
Cui, 2017, Ultrahigh and selective SO2 uptake in inorganic anion-pillared hybrid porous materials, Adv. Mater., 29, 1606929, 10.1002/adma.201606929
Yang, 2018, A single-molecule propyne TRAP: highly efficient removal of propyne from propylene with anion-pillared ultramicroporous materials, Adv. Mater., 30, 1705374, 10.1002/adma.201705374
Banerjee, 2009, Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties, J. Am. Chem. Soc., 131, 3875, 10.1021/ja809459e
Li, 2013, Systematic modulation and enhancement of CO2 : N2 selectivity and water stability in an isoreticular series of bio-MOF-11 analogues, Chem. Sci., 4, 1746, 10.1039/c3sc22207a
Eum, 2015, Highly tunable molecular sieving and adsorption properties of mixed-linker zeolitic imidazolate frameworks, J. Am. Chem. Soc., 137, 4191, 10.1021/jacs.5b00803
Nugent, 2013, Enhancement of CO2 selectivity in a pillared pcu MOM platform through pillar substitution, Chem. Commun. (Camb.), 49, 1606, 10.1039/c3cc37695h
Cadiau, 2017, Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration, Science, 356, 731, 10.1126/science.aam8310
Zhang, 2019, A microporous metal-organic framework supramolecularly assembled from a CuII Dodecaborate cluster complex for selective gas separation, Angew. Chem. Int. Ed. Engl., 58, 8145, 10.1002/anie.201903600
Cadiau, 2016, A metal-organic framework–based splitter for separating propylene from propane, Science, 353, 137, 10.1126/science.aaf6323
Belmabkhout, 2018, Natural gas upgrading using a fluorinated MOF with tuned H2S and CO2 adsorption selectivity, Nat. Energy, 3, 1059, 10.1038/s41560-018-0267-0
Zhang, 2017, Sorting of C4 olefins with interpenetrated hybrid ultramicroporous materials by combining molecular recognition and size-sieving, Angew. Chem. Int. Ed. Engl., 56, 16282, 10.1002/anie.201708769
Shekhah, 2014, Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture, Nat. Commun., 5, 4228, 10.1038/ncomms5228
Scott, 2016, Crystal engineering of a family of hybrid ultramicroporous materials based upon interpenetration and dichromate linkers, Chem. Sci., 7, 5470, 10.1039/C6SC01385F
Hu, 2016, Rationally tuning the separation performances of [M3(HCOO)6] frameworks for CH4/N2 mixtures via metal substitution, Micropor. Mesopor. Mater, 225, 456, 10.1016/j.micromeso.2016.01.030
Wang, 2014, The first example of commensurate adsorption of atomic gas in a MOF and effective separation of xenon from other noble gases, Chem. Sci., 5, 620, 10.1039/C3SC52348A
Zhang, 2019, Low-cost and high-performance microporous metal–organic framework for separation of acetylene from Carbon dioxide, ACS Sustainable Chem. Eng, 7, 1667, 10.1021/acssuschemeng.8b05431
Bao, 2018, Molecular Sieving of ethane from ethylene through the molecular cross-section size differentiation in gallate-based metal–organic frameworks, Angew. Chem. Int. Ed. Engl., 57, 16020, 10.1002/anie.201808716
Maji, 2007, A flexible interpenetrating coordination framework with a bimodal porous functionality, Nat. Mater., 6, 142, 10.1038/nmat1827
Bajpai, 2017, The role of weak interactions in controlling the mode of interpenetration in hybrid ultramicroporous materials, Chem. Commun. (Camb.), 53, 3978, 10.1039/C6CC10217D
Bastin, 2008, A microporous metal−organic framework for separation of CO2/N2 and CO2/CH4 by fixed-bed adsorption, J. Phys. Chem. C, 112, 1575, 10.1021/jp077618g
Ma, 2008, A coordinatively linked Yb metal–organic framework demonstrates high thermal stability and uncommon gas-adsorption selectivity, Angew. Chem. Int. Ed. Engl., 47, 4130, 10.1002/anie.200800312
Jiang, 2018, Controlling pore shape and size of interpenetrated anion-pillared ultramicroporous materials enables molecular sieving of CO2 combined with ultrahigh uptake capacity, ACS Appl. Mater. Interfaces, 10, 16628, 10.1021/acsami.8b03358
Li, 2018, A metal–organic framework with suitable pore size and specific functional sites for the removal of trace propyne from propylene, Angew. Chem. Int. Ed. Engl., 57, 15183, 10.1002/anie.201809869
O’Nolan, 2018, Impact of partial interpenetration in a hybrid ultramicroporous material on C2H2/C2H4 separation performance, Chem. Commun. (Camb.), 54, 3488, 10.1039/C8CC01627E
Liang, 2019, A tailor-made interpenetrated MOF with exceptional carbon-capture performance from flue gas, Chem, 5, 950, 10.1016/j.chempr.2019.02.007
Li, 2019, Microporous metal–organic framework with dual functionalities for efficient separation of acetylene from light hydrocarbon mixtures, ACS Sustainable Chem. Eng., 7, 4897, 10.1021/acssuschemeng.8b05480
Chen, 2016, Benchmark C2H2/CO2 and CO2/C2H2 separation by two closely related hybrid ultramicroporous materials, Chem, 1, 753, 10.1016/j.chempr.2016.10.009
Elsaidi, 2014, Putting the squeeze on CH4 and CO2 through control over interpenetration in diamondoid Nets, J. Am. Chem. Soc., 136, 5072, 10.1021/ja500005k
Zheng, 2010, Pore space partition and charge separation in cage-within-cage indium−organic frameworks with high CO2 uptake, J. Am. Chem. Soc., 132, 17062, 10.1021/ja106903p
Zhao, 2015, Pore space partition by symmetry-matching regulated ligand insertion and dramatic tuning on Carbon dioxide uptake, J. Am. Chem. Soc., 137, 1396, 10.1021/ja512137t
Zhai, 2017, Pore space partition in metal–organic frameworks, Acc. Chem. Res., 50, 407, 10.1021/acs.accounts.6b00526
Tan, 2011, Pore partition effect on gas sorption properties of an anionic metal–organic framework with exposed Cu2+ coordination sites, Chem. Commun. (Camb.), 47, 10647, 10.1039/c1cc14118j
Ling, 2013, Enhancing CO2 adsorption of a Zn-phosphonocarboxylate framework by pore space partitions, Chem. Commun. (Camb.), 49, 78, 10.1039/C2CC37174J
Zhai, 2016, An ultra-tunable platform for molecular engineering of high-performance crystalline porous materials, Nat. Commun., 7, 13645, 10.1038/ncomms13645
Ye, 2019, Pore space partition within a metal–organic framework for highly efficient C2H2/CO2 separation, J. Am. Chem. Soc., 141, 4130, 10.1021/jacs.9b00232
Kim, 2017, Exploiting diffusion barrier and chemical affinity of metal–organic frameworks for efficient hydrogen isotope separation, J. Am. Chem. Soc., 139, 15135, 10.1021/jacs.7b07925
Hazra, 2017, Separation/purification of ethylene from an acetylene/ethylene mixture in a pillared-layer porous metal–organic framework, Chem. Commun. (Camb.), 53, 4907, 10.1039/C7CC00726D
Li, 2009, Zeolitic imidazolate frameworks for kinetic separation of propane and propene, J. Am. Chem. Soc., 131, 10368, 10.1021/ja9039983
Chen, 2016, Tuning pore size in square-lattice coordination networks for size-selective sieving of CO2, Angew. Chem. Int. Ed. Engl., 55, 10268, 10.1002/anie.201603934
Lin, 2018, Molecular sieving of ethylene from ethane using a rigid metal–organic framework, Nat. Mater., 17, 1128, 10.1038/s41563-018-0206-2
Wang, 2018, Tailor-made microporous metal–organic frameworks for the full separation of propane from propylene Through selective size exclusion, Adv. Mater., 30, e1805088, 10.1002/adma.201805088
Pan, 2006, Separation of hydrocarbons with a microporous metal–organic framework, Angew. Chem. Int. Ed. Engl., 45, 616, 10.1002/anie.200503503
Maes, 2010, Separation of C5-hydrocarbons on microporous materials: complementary performance of MOFs and zeolites, J. Am. Chem. Soc., 132, 2284, 10.1021/ja9088378
Assen, 2015, Ultra-tuning of the rare-earth fcu-MOF aperture size for selective molecular exclusion of branched paraffins, Angew. Chem. Int. Ed. Engl., 54, 14353, 10.1002/anie.201506345
Wang, 2018, One-of-a-kind: a microporous metal–organic framework capable of adsorptive separation of linear, mono- and di-branched alkane isomers via temperature- and adsorbate-dependent molecular sieving, Energy Environ. Sci., 11, 1226, 10.1039/C8EE00459E
Humphrey, 2007, Porous cobalt(II) organic frameworks with corrugated walls: structurally robust gas-sorption materials, Angew. Chem. Int. Ed. Engl., 46, 272, 10.1002/anie.200601627
Wriedt, 2012, Low-energy selective capture of carbon dioxide by a pre-designed elastic single-molecule trap, Angew. Chem. Int. Ed. Engl., 51, 9804, 10.1002/anie.201202992
Du, 2014, Divergent kinetic and thermodynamic hydration of a porous Cu(II) coordination polymer with exclusive CO2 sorption selectivity, J. Am. Chem. Soc., 136, 10906, 10.1021/ja506357n
Li, 2019, A robust squarate-based metal–organic framework demonstrates record-high affinity and selectivity for xenon over krypton, J. Am. Chem. Soc., 141, 9358, 10.1021/jacs.9b03422
Li, 2013, Design and preparation of a core–shell metal–organic framework for selective CO2 capture, J. Am. Chem. Soc., 135, 9984, 10.1021/ja403008j
Park, 2012, Reversible alteration of CO2 adsorption upon photochemical or thermal treatment in a metal–organic framework, J. Am. Chem. Soc., 134, 99, 10.1021/ja209197f
Lin, 2017, Optimized separation of acetylene from carbon dioxide and ethylene in a microporous material, J. Am. Chem. Soc., 139, 8022, 10.1021/jacs.7b03850
Li, 2017, Flexible–robust metal–organic framework for efficient removal of propyne from propylene, J. Am. Chem. Soc., 139, 7733, 10.1021/jacs.7b04268
Liao, 2015, Efficient purification of ethene by an ethane-trapping metal-organic framework, Nat. Commun., 6, 8697, 10.1038/ncomms9697
Vaidhyanathan, 2010, Direct observation and quantification of CO2 binding within an amine-functionalized nanoporous solid, Science, 330, 650, 10.1126/science.1194237
Trickett, 2017, The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion, Nat. Rev. Mater., 2, 17045, 10.1038/natrevmats.2017.45
Yu, 2017, CO2 capture and separations using MOFs: computational and experimental studies, Chem. Rev., 117, 9674, 10.1021/acs.chemrev.6b00626
Lin, 2010, Nonclassical active site for enhanced gas sorption in porous coordination polymer, J. Am. Chem. Soc., 132, 6654, 10.1021/ja1009635
Liao, 2012, Strong and dynamic CO2 sorption in a flexible porous framework possessing guest chelating claws, J. Am. Chem. Soc., 134, 17380, 10.1021/ja3073512
Mohamed, 2012, Highly selective CO2 uptake in uninodal 6-connected “mmo” nets based upon MO42– (M = Cr, Mo) pillars, J. Am. Chem. Soc., 134, 19556, 10.1021/ja309452y
Lin, 2018, Boosting ethane/ethylene separation within isoreticular ultramicroporous metal–organic frameworks, J. Am. Chem. Soc., 140, 12940, 10.1021/jacs.8b07563
Gassensmith, 2011, Strong and reversible binding of carbon dioxide in a green metal–organic framework, J. Am. Chem. Soc., 133, 15312, 10.1021/ja206525x
Li, 2019, Inverse adsorption separation of CO2/C2H2 mixture in cyclodextrin-based metal–organic frameworks, ACS Appl. Mater. Interfaces, 11, 2543, 10.1021/acsami.8b19590
You, 2018, Tuning binding tendencies of small molecules in metal–organic frameworks with open metal sites by metal substitution and linker functionalization, J. Phys. Chem. C, 122, 27486, 10.1021/acs.jpcc.8b08855
Murray, 2010, Highly-selective and reversible O2 binding in Cr3(1,3,5-benzenetricarboxylate)2, J. Am. Chem. Soc., 132, 7856, 10.1021/ja1027925
Britt, 2008, Metal-organic frameworks with high capacity and selectivity for harmful gases, Proc. Natl. Acad. Sci. USA, 105, 11623, 10.1073/pnas.0804900105
Caskey, 2008, Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores, J. Am. Chem. Soc., 130, 10870, 10.1021/ja8036096
Kong, 2012, CO2 dynamics in a metal–organic framework with open metal sites, J. Am. Chem. Soc., 134, 14341, 10.1021/ja306822p
Bloch, 2011, Selective binding of O2 over N2 in a redox–active metal–organic framework with open iron(II) coordination sites, J. Am. Chem. Soc., 133, 14814, 10.1021/ja205976v
Bao, 2011, Adsorption of ethane, ethylene, propane, and propylene on a magnesium-based metal–organic framework, Langmuir, 27, 13554, 10.1021/la2030473
Bae, 2012, High propene/propane selectivity in isostructural metal–organic frameworks with high densities of open metal sites, Angew. Chem. Int. Ed. Engl., 51, 1857, 10.1002/anie.201107534
He, 2012, Metal–organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons, Energy Environ. Sci., 5, 9107, 10.1039/c2ee22858k
Bloch, 2012, Hydrocarbon separations in a metal-organic framework with open iron(II) coordination sites, Science, 335, 1606, 10.1126/science.1217544
Geier, 2013, Selective adsorption of ethylene over ethane and propylene over propane in the metal–organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Zn), Chem. Sci., 4, 2054, 10.1039/c3sc00032j
Bachman, 2017, M2(m-dobdc) (M = Mn, Fe, Co, Ni) metal–organic frameworks as highly selective, high-capacity adsorbents for olefin/paraffin separations, J. Am. Chem. Soc., 139, 15363, 10.1021/jacs.7b06397
Bachman, 2018, Enabling alternative ethylene production through its selective adsorption in the metal–organic framework Mn2(m-dobdc), Energy Environ. Sci., 11, 2423, 10.1039/C8EE01332B
Bloch, 2014, Reversible CO binding enables tunable CO/H2 and CO/N2 separations in metal–organic frameworks with exposed divalent metal cations, J. Am. Chem. Soc., 136, 10752, 10.1021/ja505318p
Lee, 2015, Small-molecule adsorption in open-site metal–organic frameworks: a systematic density functional theory study for rational design, Chem. Mater., 27, 668, 10.1021/cm502760q
Liao, 2014, Drastic enhancement of catalytic activity via post-oxidation of a porous MnII triazolate framework, Chemistry, 20, 11303, 10.1002/chem.201403123
Rieth, 2018, Tunable metal–organic frameworks enable high-efficiency cascaded adsorption heat pumps, J. Am. Chem. Soc., 140, 17591, 10.1021/jacs.8b09655
Runčevski, 2016, Adsorption of two gas molecules at a single metal site in a metal–organic framework, Chem. Commun. (Camb.), 52, 8251, 10.1039/C6CC02494G
Luo, 2016, UTSA-74: a MOF-74 isomer with two accessible binding sites per metal center for highly selective gas separation, J. Am. Chem. Soc., 138, 5678, 10.1021/jacs.6b02030
Yang, 2019, Ligand charge separation to build highly stable quasi-isomer of MOF-74-Zn, J. Am. Chem. Soc., 141, 9808, 10.1021/jacs.9b04432
Reed, 2017, A spin transition mechanism for cooperative adsorption in metal–organic frameworks, Nature, 550, 96, 10.1038/nature23674
Sato, 2014, Self-accelerating CO sorption in a soft nanoporous crystal, Science, 343, 167, 10.1126/science.1246423
He, 2014, Multifunctional metal–organic frameworks constructed from meta-benzenedicarboxylate units, Chem. Soc. Rev., 43, 5618, 10.1039/C4CS00041B
Reed, 2016, Reversible CO scavenging via adsorbate-dependent spin state transitions in an iron(II)–triazolate metal–organic framework, J. Am. Chem. Soc., 138, 5594, 10.1021/jacs.6b00248
Xiao, 2016, Selective, tunable O2 binding in cobalt(II)–Triazolate/Pyrazolate metal–organic frameworks, J. Am. Chem. Soc., 138, 7161, 10.1021/jacs.6b03680
Yoon, 2017, Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites, Nat. Mater., 16, 526, 10.1038/nmat4825
Li, 2013, Porous materials with pre-designed single-molecule traps for CO2 selective adsorption, Nat. Commun., 4, 1538, 10.1038/ncomms2552
Niu, 2019, A metal–organic framework based methane nano-trap for the capture of coal-mine methane, Angew. Chem. Int. Ed. Engl., 58, 10138, 10.1002/anie.201904507
Chen, 2008, Surface interactions and quantum kinetic molecular sieving for H2 and D2 adsorption on a mixed metal−organic framework material, J. Am. Chem. Soc., 130, 6411, 10.1021/ja710144k
Xiang, 2011, Rationally tuned micropores within enantiopure metal-organic frameworks for highly selective separation of acetylene and ethylene, Nat. Commun., 2, 204, 10.1038/ncomms1206
Peng, 2018, Robust ultramicroporous metal–organic frameworks with benchmark affinity for acetylene, Angew. Chem. Int. Ed. Engl., 57, 10971, 10.1002/anie.201806732
Zhang, 2015, Biomimicry in metal–organic materials, Coord. Chem. Rev., 293–294, 327, 10.1016/j.ccr.2014.05.031
Demessence, 2009, Strong CO2 binding in a water-stable, triazolate-bridged metal−organic framework functionalized with ethylenediamine, J. Am. Chem. Soc., 131, 8784, 10.1021/ja903411w
McDonald, 2011, Enhanced carbon dioxide capture upon incorporation of N,N′-dimethylethylenediamine in the metal–organic framework CuBTTri, Chem. Sci., 2, 2022, 10.1039/c1sc00354b
McDonald, 2012, Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal–organic framework mmen-Mg2(dobpdc), J. Am. Chem. Soc., 134, 7056, 10.1021/ja300034j
McDonald, 2015, Cooperative insertion of CO2 in diamine-appended metal-organic frameworks, Nature, 519, 303, 10.1038/nature14327
Siegelman, 2017, Controlling cooperative CO2 adsorption in diamine-appended Mg2(dobpdc) metal–organic frameworks, J. Am. Chem. Soc., 139, 10526, 10.1021/jacs.7b05858
Liao, 2016, Putting an ultrahigh concentration of amine groups into a metal–organic framework for CO2 capture at low pressures, Chem. Sci., 7, 6528, 10.1039/C6SC00836D
Liao, 2015, Monodentate hydroxide as a super strong yet reversible active site for CO2 capture from high-humidity flue gas, Energy Environ. Sci., 8, 1011, 10.1039/C4EE02717E
Bien, 2018, Bioinspired metal–organic framework for trace CO2 capture, J. Am. Chem. Soc., 140, 12662, 10.1021/jacs.8b06109
Wright, 2018, A structural mimic of carbonic anhydrase in a metal-organic framework, Chem, 4, 2894, 10.1016/j.chempr.2018.09.011
Li, 2018, Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites, Science, 362, 443, 10.1126/science.aat0586
Lu, 2018, Direct observation of supramolecular binding of light hydrocarbons in vanadium(III) and (IV) metal–organic framework materials, Chem. Sci., 9, 3401, 10.1039/C8SC00330K
Bloch, 2010, Metal insertion in a microporous metal−organic framework lined with 2,2′-bipyridine, J. Am. Chem. Soc., 132, 14382, 10.1021/ja106935d
Chang, 2015, Immobilization of Ag(I) into a metal–organic framework with –SO3H sites for highly selective olefin–paraffin separation at room temperature, Chem. Commun. (Camb.), 51, 2859, 10.1039/C4CC09679G
Wang, 2019, Alternatives to cryogenic distillation: advanced porous materials in adsorptive light olefin/paraffin separations, Small, 15, e1900058, 10.1002/smll.201900058
Fracaroli, 2014, Metal–organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water, J. Am. Chem. Soc., 136, 8863, 10.1021/ja503296c
Liao, 2015, Self-catalysed aerobic oxidization of organic linker in porous crystal for on-demand regulation of sorption behaviours, Nat. Commun., 6, 6350, 10.1038/ncomms7350
Wang, 2019, Selective aerobic oxidation of a metal–organic framework boosts thermodynamic and kinetic propylene/propane selectivity, Angew. Chem. Int. Ed. Engl., 58, 7692, 10.1002/anie.201902209
Xiang, 2012, Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions, Nat. Commun., 3, 954, 10.1038/ncomms1956
Hu, 2015, Microporous metal–organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures, Nat. Commun., 6, 7328, 10.1038/ncomms8328
Wen, 2018, Fine-tuning of nano-traps in a stable metal–organic framework for highly efficient removal of propyne from propylene, J. Mater. Chem. A, 6, 6931, 10.1039/C8TA00598B
Howarth, 2016, Chemical, thermal and mechanical stabilities of metal–organic frameworks, Nat. Rev. Mater., 1, 15018, 10.1038/natrevmats.2015.18
Rubio-Martinez, 2017, New synthetic routes towards MOF production at scale, Chem. Soc. Rev., 46, 3453, 10.1039/C7CS00109F
Denny, 2016, Metal–organic frameworks for membrane-based separations, Nat. Rev. Mater., 1, 16078, 10.1038/natrevmats.2016.78
Zhou, 2019, Intermediate-sized molecular sieving of styrene from larger and smaller analogues, Nat. Mater., 18, 994, 10.1038/s41563-019-0427-z
Krause, 2016, A pressure-amplifying framework material with negative gas adsorption transitions, Nature, 532, 348, 10.1038/nature17430
Zhang, 2008, Exceptional framework flexibility and sorption behavior of a multifunctional porous cuprous triazolate framework, J. Am. Chem. Soc., 130, 6010, 10.1021/ja800550a
Fernandez, 2012, Switching Kr/Xe selectivity with temperature in a metal–organic framework, J. Am. Chem. Soc., 134, 9046, 10.1021/ja302071t
Carrington, 2017, Solvent-switchable continuous-breathing behaviour in a diamondoid metal–organic framework and its influence on CO2 versus CH4 selectivity, Nat. Chem., 9, 882, 10.1038/nchem.2747
Gücüyener, 2010, Ethane/ethene separation turned on its head: selective ethane adsorption on the metal−organic framework ZIF-7 through a gate-opening mechanism, J. Am. Chem. Soc., 132, 17704, 10.1021/ja1089765