Micromotor-derived composites for biomedicine delivery and other related purposes

Xiang Xu1, Zhiyi Huo1, Jiaming Guo1, Hao Líu1, Xiaole Qi1, Zhenghong Wu1
1Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ismagilov RF, Schwartz A, Bowden N, Whitesides GM (2002) Autonomous movement and self-assembly. Angew Chem Int Ed 41(4):652–654

Zhang D, Wang D, Li J, Xu X, Zhang H, Duan R, Song B, Zhang D, Dong B (2019) One-step synthesis of PCL/Mg Janus micromotor for precious metal ion sensing, removal and recycling. J Mater Sci 54(9):7322–7332

Gao W, Uygun A, Wang J (2012) Hydrogen-bubble-propelled zinc-based microrockets in strongly acidic media. J Am Chem Soc 134(2):897–900

Zhang L, Abbott JJ, Dong L, Kratochvil BE, Bell D, Nelson BJ (2009) Artificial bacterial flagella: fabrication and magnetic control. Appl Phys Lett 94(6):064107

Campuzano S, Orozco J, Kagan D, Guix M, Gao W, Sattayasamitsathit S, Claussen JC, Merkoçi A, Wang J (2012) Bacterial isolation by lectin-modified microengines. Nano Lett 12(1):396–401

Yu X, Li Y, Wu J, Ju H (2014) Motor-based autonomous microsensor for motion and counting immunoassay of cancer biomarker. Anal Chem 86(9):4501–4507

Hu C-MJ, Fang RH, Copp J, Luk BT, Zhang L (2013) A biomimetic nanosponge that absorbs pore-forming toxins. Nat Nanotechnol 8(5):336–340

Wu Z, Li J, de Ávila BE-F, Li T, Gao W, He Q, Zhang L, Wang J (2015) Water-powered cell-mimicking Janus micromotor. Adv Funct Mater 25(48):7497–7501

Wang W, Duan W, Ahmed S, Mallouk TE, Sen A (2013) Small power: autonomous nano-and micromotors propelled by self-generated gradients. Nano Today 8(5):531–554

Li J, de Ávila BE-F, Gao W, Zhang L, Wang J (2017) Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci Robot 2(4):eaam6431

Purcell EM (1977) Life at low Reynolds number. Am J Phys 45(1):3–11

Kagan D, Benchimol MJ, Claussen JC, Chuluun-Erdene E, Esener S, Wang J (2012) Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue penetration and deformation. Angew Chem Int Ed 51(30):7519–7522

Xu H, Sanchez MM, Magdanz V, Schwarz L, Hebenstreit F, Schmidt OG (2017) Sperm-hybrid micromotor for drug delivery in the female reproductive tract. arXiv preprint arXiv:170308510

Cundari TR, Gordon MS (1991) Principal resonance contributors to high-valent, transition-metal alkylidene complexes. J Am Chem Soc 113(14):5231–5243

Paxton WF, Baker PT, Kline TR, Wang Y, Mallouk TE, Sen A (2006) Catalytically induced electrokinetics for motors and micropumps. J Am Chem Soc 128(46):14881–14888

Wang Y, Hernandez RM, Bartlett DJ, Bingham JM, Kline TR, Sen A, Mallouk TE (2006) Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir 22(25):10451–10456

Li J, Rozen I, Wang J (2016) Rocket science at the nanoscale. ACS Nano 10(6):5619–5634

Moran JL, Posner JD (2017) Phoretic self-propulsion. Annu Rev Fluid Mech 49:511–540

Sattayasamitsathit S, Kou H, Gao W, Thavarajah W, Kaufmann K, Zhang L, Wang J (2014) Fully loaded micromotors for combinatorial delivery and autonomous release of cargoes. Small 10(14):2830–2833

Karshalev E, de Ávila BE-F, Beltrán-Gastélum M, Angsantikul P, Tang S, Mundaca-Uribe R, Zhang F, Zhao J, Zhang L, Wang J (2018) Micromotor pills as a dynamic oral delivery platform. ACS Nano 12(8):8397–8405

Wang L, Zhu H, Shi Y, Ge Y, Feng X, Liu R, Li Y, Ma Y, Wang L (2018) Novel catalytic micromotor of porous zeolitic imidazolate framework-67 for precise drug delivery. Nanoscale 10(24):11384–11391

Wu Z, Wu Y, He W, Lin X, Sun J, He Q (2013) Self-propelled polymer-based multilayer nanorockets for transportation and drug release. Angew Chem Int Ed 52(27):7000–7003

Garcia-Gradilla V, Orozco J, Sattayasamitsathit S, Soto F, Kuralay F, Pourazary A, Katzenberg A, Gao W, Shen Y, Wang J (2013) Functionalized ultrasound-propelled magnetically guided nanomotors: toward practical biomedical applications. ACS Nano 7(10):9232–9240

Sun Y, Liu Y, Song B, Zhang H, Duan R, Zhang D, Dong B (2019) A light-driven micromotor with complex motion behaviors for controlled release. Adv Mater Interfaces 6(4):1801965

Dong R, Hu Y, Wu Y, Gao W, Ren B, Wang Q, Cai Y (2017) Visible-light-driven BiOI-based Janus micromotor in pure water. J Am Chem Soc 139(5):1722–1725

Villa K, Manzanares Palenzuela CL, Zk Sofer, Matějková S, Pumera M (2018) Metal-free visible-light photoactivated C3N4 bubble-propelled tubular micromotors with inherent fluorescence and on/off capabilities. ACS Nano 12(12):12482–12491

Zhou D, Li YC, Xu P, McCool NS, Li L, Wang W, Mallouk TE (2016) Visible-light controlled catalytic Cu2O–Au micromotors. Nanoscale 9(1):75–78

Dong R, Cai Y, Yang Y, Gao W, Ren B (2018) Photocatalytic micro/nanomotors: from construction to applications. Acc Chem Res 51(9):1940–1947

Pacheco M, Jurado-Sánchez B, Escarpa A (2019) Visible-light-driven janus microvehicles in biological media. Angew Chem Int Ed 58(50):18017–18024

Gao W, Kagan D, Pak OS, Clawson C, Campuzano S, Chuluun-Erdene E, Shipton E, Fullerton EE, Zhang L, Lauga E (2012) Cargo-towing fuel-free magnetic nanoswimmers for targeted drug delivery. Small 8(3):460–467

Paxton WF, Kistler KC, Olmeda CC, Sen A, St. Angelo SK, Cao Y, Mallouk TE, Lammert PE, Crespi VH (2004) Catalytic nanomotors: autonomous movement of striped nanorods. J Am Chem Soc 126(41):13424–13431

Moran J, Wheat P, Posner J (2010) Locomotion of electrocatalytic nanomotors due to reaction induced charge autoelectrophoresis. Phys Rev E 81(6):065302

Bayati P, Najafi A (2019) Electrophoresis of active Janus particles. J Chem Phys 150(23):234902

Bayati P, Najafi A (2016) Dynamics of two interacting active Janus particles. J Chem Phys 144(13):134901

Ohshima H (2006) Theory of colloid and interfacial electric phenomena. Elsevier, Amsterdam

Russel WB, Russel W, Saville DA, Schowalter WR (1991) Colloidal dispersions. Cambridge University Press, Cambridge

Demirörs AF, Akan MT, Poloni E, Studart AR (2018) Active cargo transport with Janus colloidal shuttles using electric and magnetic fields. Soft Matter 14(23):4741–4749

Magdanz V, Medina-Sánchez M, Chen Y, Guix M, Schmidt OG (2015) How to improve spermbot performance. Adv Funct Mater 25(18):2763–2770

Felfoul O, Mohammadi M, Taherkhani S, De Lanauze D, Xu YZ, Loghin D, Essa S, Jancik S, Houle D, Lafleur M (2016) Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat Nanotechnol 11(11):941

Servant A, Qiu F, Mazza M, Kostarelos K, Nelson BJ (2015) Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Adv Mater 27(19):2981–2988

Shao J, Xuan M, Zhang H, Lin X, Wu Z, He Q (2017) Chemotaxis-guided hybrid neutrophil micromotors for targeted drug transport. Angew Chem Int Ed 56(42):12935–12939

Ge Y, Wang T, Zheng M, Jiang Z, Wang S (2019) Controlled one-sided growth of Janus TiO2/MnO2 nanomotors. Nanotechnology 30(31):315702

Liu M, Liu L, Gao W, Su M, Ge Y, Shi L, Zhang H, Dong B, Li CY (2014) A micromotor based on polymer single crystals and nanoparticles: toward functional versatility. Nanoscale 6(15):8601–8605

Si T, Zou X, Wu Z, Li T, Wang X, Ivanovich KI, He Q (2019) A bubble-dragged catalytic polymer microrocket. Chem Asian J 14(14):2460–2464

Zhu H, Nawar S, Werner JG, Liu J, Huang G, Mei Y, Weitz DA, Solovev AA (2019) Hydrogel micromotors with catalyst-containing liquid core and shell. J Phys: Condens Matter 31(21):214004

Li J, Ji F, Ng DH, Liu J, Bing X, Wang P (2019) Bioinspired Pt-free molecularly imprinted hydrogel-based magnetic Janus micromotors for temperature-responsive recognition and adsorption of erythromycin in water. Chem Eng J 369:611–620

Wu Z, Lin X, Zou X, Sun J, He Q (2015) Biodegradable protein-based rockets for drug transportation and light-triggered release. ACS Appl Mater Interfaces 7(1):250–255

Xuan M, Wu Z, Shao J, Dai L, Si T, He Q (2016) Near infrared light-powered Janus mesoporous silica nanoparticle motors. J Am Chem Soc 138(20):6492–6497

Zhang F, Mundaca-Uribe R, Gong H, de Ávila BE-F, Beltrán-Gastélum M, Karshalev E, Nourhani A, Tong Y, Nguyen B, Gallot M (2019) A macrophage–magnesium hybrid biomotor: fabrication and characterization. Adv Mater 31(27):1901828

Ghosh A, Fischer P (2009) Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett 9(6):2243–2245

Zhang L, Peyer KE, Petit T, Kratochvil BE, Nelson BJ (2010) Motion control of artificial bacterial flagella. In: 10th IEEE international conference on nanotechnology. IEEE, pp 893–896

Chen XZ, Hoop M, Shamsudhin N, Huang T, Özkale B, Li Q, Siringil E, Mushtaq F, Di Tizio L, Nelson BJ (2017) Hybrid magnetoelectric nanowires for nanorobotic applications: fabrication, magnetoelectric coupling, and magnetically assisted in vitro targeted drug delivery. Adv Mater 29(8):1605458

Mou F, Chen C, Zhong Q, Yin Y, Ma H, Guan J (2014) Autonomous motion and temperature-controlled drug delivery of Mg/Pt-poly (N-isopropylacrylamide) Janus micromotors driven by simulated body fluid and blood plasma. ACS Appl Mater Interfaces 6(12):9897–9903

Yang P, Song X, Jia C, Chen H-S (2018) Metal-organic framework-derived hierarchical ZnO/NiO composites: morphology, microstructure and electrochemical performance. J Ind Eng Chem 62:250–257

Li J, Yu X, Xu M, Liu W, Sandraz E, Lan H, Wang J, Cohen SM (2017) Metal–organic frameworks as micromotors with tunable engines and brakes. J Am Chem Soc 139(2):611–614

Wang R, Guo W, Li X, Liu Z, Liu H, Ding S (2017) Highly efficient MOF-based self-propelled micromotors for water purification. RSC advances 7(67):42462–42467

Munerati M, Cortesi R, Ferrari D, Di Virgilio F, Nastruzzi C (1994) Macrophages loaded with doxorubicin by ATP-mediated permeabilization: potential carriers for antitumor therapy. Biochimica et Biophysica Acta (BBA)-Mol Cell Res 1224(2):269–276

Yang F, Cho S-W, Son SM, Bogatyrev SR, Singh D, Green JJ, Mei Y, Park S, Bhang SH, Kim B-S (2010) Genetic engineering of human stem cells for enhanced angiogenesis using biodegradable polymeric nanoparticles. Proc Natl Acad Sci 107(8):3317–3322

Celiz AD, Smith JG, Langer R, Anderson DG, Winkler DA, Barrett DA, Davies MC, Young LE, Denning C, Alexander MR (2014) Materials for stem cell factories of the future. Nat Mater 13(6):570–579

Pierigè F, Serafini S, Rossi L, Magnani M (2008) Cell-based drug delivery. Adv Drug Deliv Rev 60(2):286–295

Gao W, Dong R, Thamphiwatana S, Li J, Gao W, Zhang L, Wang J (2015) Artificial micromotors in the mouse’s stomach: a step toward in vivo use of synthetic motors. ACS Nano 9(1):117–123

Chen C, Karshalev E, Li J, Soto F, Castillo R, Campos I, Mou F, Guan J, Wang J (2016) Transient micromotors that disappear when no longer needed. ACS Nano 10(11):10389–10396

Liu L, Liu M, Su Y, Dong Y, Zhou W, Zhang L, Zhang H, Dong B, Chi L (2015) Tadpole-like artificial micromotor. Nanoscale 7(6):2276–2280

Manesh KM, Campuzano S, Gao W, Lobo-Castañón MJ, Shitanda I, Kiantaj K, Wang J (2013) Nanomotor-based biocatalytic patterning of helical metal microstructures. Nanoscale 5(4):1310–1314

Su M, Liu M, Liu L, Sun Y, Li M, Wang D, Zhang H, Dong B (2015) Shape-controlled fabrication of the polymer-based micromotor based on the polydimethylsiloxane template. Langmuir 31(43):11914–11920

Roberge PR (2000) Handbook of corrosion engineering. McGraw-Hill, New York, NY

Arqué X, Romero-Rivera A, Feixas F, Patiño T, Osuna S, Sánchez S (2019) Intrinsic enzymatic properties modulate the self-propulsion of micromotors. Nat Commun 10(1):1–12

Lai SK, Wang Y-Y, Hanes J (2009) Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev 61(2):158–171

Celli JP, Turner BS, Afdhal NH, Ewoldt RH, McKinley GH, Bansil R, Erramilli S (2007) Rheology of gastric mucin exhibits a pH-dependent sol–gel transition. Biomacromolecules 8(5):1580–1586

Røn T, Patil NJ, Ajalloueian F, Rishikesan S, Zappone B, Chronakis IS, Lee S (2017) Gastric mucus and mucus like hydrogels: thin film lubricating properties at soft interfaces. Biointerphases 12(5):051001

Walker D, Käsdorf BT, Jeong H-H, Lieleg O, Fischer P (2015) Enzymatically active biomimetic micropropellers for the penetration of mucin gels. Sci Adv 1(11):e1500501

Gu M, Yildiz H, Carrier R, Belfort G (2013) Discovery of low mucus adhesion surfaces. Acta Biomater 9(2):5201–5207

Lai SK, O’Hanlon DE, Harrold S, Man ST, Wang Y-Y, Cone R, Hanes J (2007) Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci 104(5):1482–1487

Macierzanka A, Rigby NM, Corfield AP, Wellner N, Böttger F, Mills EC, Mackie AR (2011) Adsorption of bile salts to particles allows penetration of intestinal mucus. Soft Matter 7(18):8077–8084

Li J, Thamphiwatana S, Liu W, de Ávila BE-F, Angsantikul P, Sandraz E, Wang J, Xu T, Soto F, Ramez V (2016) Enteric micromotor can selectively position and spontaneously propel in the gastrointestinal tract. ACS Nano 10(10):9536–9542

Li J, Angsantikul P, Liu W, de Ávila BE-F, Thamphiwatana S, Xu M, Sandraz E, Wang X, Delezuk J, Gao W (2017) Micromotors spontaneously neutralize gastric acid for pH-responsive payload release. Angew Chem Int Ed 56(8):2156–2161

Bennink RJ, de Jonge WJ, Symonds EL, van den Wijngaard RM, Spijkerboer AL, Benninga MA, Boeckxstaens GE (2003) Validation of gastric-emptying scintigraphy of solids and liquids in mice using dedicated animal pinhole scintigraphy. J Nucl Med 44(7):1099–1104

de Ávila BE-F, Angsantikul P, Li J, Gao W, Zhang L, Wang J (2018) Micromotors go in vivo: from test tubes to live animals. Adv Funct Mater 28(25):1705640

Moayyedi P, Leontiadis GI (2012) The risks of PPI therapy. Nat Rev Gastroenterol Hepatol 9(3):132–139

Xie Y, Bowe B, Li T, Xian H, Yan Y, Al-Aly Z (2017) Risk of death among users of proton pump inhibitors: a longitudinal observational cohort study of United States veterans. BMJ Open 7(6):e015735

Ho PM, Maddox TM, Wang L, Fihn SD, Jesse RL, Peterson ED, Rumsfeld JS (2009) Risk of adverse outcomes associated with concomitant use of clopidogrel and proton pump inhibitors following acute coronary syndrome. JAMA 301(9):937–944

de Ávila BE-F, Angsantikul P, Li J, Lopez-Ramirez MA, Ramírez-Herrera DE, Thamphiwatana S, Chen C, Delezuk J, Samakapiruk R, Ramez V (2017) Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nat Commun 8(1):1–9

Shalaby WS (1995) Development of oral vaccines to stimulate mucosal and systemic immunity: barriers and novel strategies. Clin Immunol Immunopathol 74(2):127–134

Wei X, Beltrán-Gastélum M, Karshalev E, de Ávila BE-F, Zhou J, Ran D, Angsantikul P, Fang RH, Wang J, Zhang L (2019) Biomimetic micromotor enables active delivery of antigens for oral vaccination. Nano Lett 19(3):1914–1921

Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro-and nanoparticles in drug delivery. J Controlled Release 100(1):5–28

des Rieux A, Fievez V, Garinot M, Schneider Y-J, Préat V (2006) Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Controlled Release 116(1):1–27

de Ávila BE-F, Angell C, Soto F, Lopez-Ramirez MA, Báez DF, Xie S, Wang J, Chen Y (2016) Acoustically propelled nanomotors for intracellular siRNA delivery. ACS Nano 10(5):4997–5005

Wang W, Li S, Mair L, Ahmed S, Huang TJ, Mallouk TE (2014) Acoustic propulsion of nanorod motors inside living cells. Angew Chem Int Ed 53(12):3201–3204

Hughes PM, Olejnik O, Chang-Lin J-E, Wilson CG (2005) Topical and systemic drug delivery to the posterior segments. Adv Drug Deliv Rev 57(14):2010–2032

Urtti A (2006) Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev 58(11):1131–1135

Wu Z, Troll J, Jeong H-H, Wei Q, Stang M, Ziemssen F, Wang Z, Dong M, Schnichels S, Qiu T (2018) A swarm of slippery micropropellers penetrates the vitreous body of the eye. Sci Adv 4(11):eaat4388

Peters C, Hoop M, Pané S, Nelson BJ, Hierold C (2016) Degradable magnetic composites for minimally invasive interventions: device fabrication, targeted drug delivery, and cytotoxicity tests. Adv Mater 28(3):533–538

Qiu F, Fujita S, Mhanna R, Zhang L, Simona BR, Nelson BJ (2015) Magnetic helical microswimmers functionalized with lipoplexes for targeted gene delivery. Adv Funct Mater 25(11):1666–1671

Xuan M, Shao J, Lin X, Dai L, He Q (2014) Self-propelled janus mesoporous silica nanomotors with sub-100 nm diameters for drug encapsulation and delivery. ChemPhysChem 15(11):2255–2260

Gao C, Lin Z, Wang D, Wu Z, Xie H, He Q (2019) Red blood cell-mimicking micromotor for active photodynamic cancer therapy. ACS Appl Mater Interfaces 11(26):23392–23400

Wu Z, Li T, Li J, Gao W, Xu T, Christianson C, Gao W, Galarnyk M, He Q, Zhang L (2014) Turning erythrocytes into functional micromotors. ACS Nano 8(12):12041–12048

Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13(3):159–175

O’Brien XM, Loosley AJ, Oakley KE, Tang JX, Reichner JS (2014) Technical Advance: introducing a novel metric, directionality time, to quantify human neutrophil chemotaxis as a function of matrix composition and stiffness. J Leukoc Biol 95(6):993–1004

Freitas M, Porto G, Lima JL, Fernandes E (2008) Isolation and activation of human neutrophils in vitro. The importance of the anticoagulant used during blood collection. Clin Biochem 41(7–8):570–575

Sundararajan S, Lammert PE, Zudans AW, Crespi VH, Sen A (2008) Catalytic motors for transport of colloidal cargo. Nano Lett 8(5):1271–1276

Sundararajan S, Sengupta S, Ibele ME, Sen A (2010) Drop-off of colloidal cargo transported by catalytic Pt–Au nanomotors via photochemical stimuli. Small 6(14):1479–1482

Kagan D, Laocharoensuk R, Zimmerman M, Clawson C, Balasubramanian S, Kang D, Bishop D, Sattayasamitsathit S, Zhang L, Wang J (2010) Rapid delivery of drug carriers propelled and navigated by catalytic nanoshuttles. Small 6(23):2741–2747

Kagan D, Campuzano S, Balasubramanian S, Kuralay F, Flechsig G-U, Wang J (2011) Functionalized micromachines for selective and rapid isolation of nucleic acid targets from complex samples. Nano Lett 11(5):2083–2087

Balasubramanian S, Kagan D, Jack Hu CM, Campuzano S, Lobo-Castañon MJ, Lim N, Kang DY, Zimmerman M, Zhang L, Wang J (2011) Micromachine-enabled capture and isolation of cancer cells in complex media. Angew Chem Int Ed 50(18):4161–4164

Morales-Narváez E, Guix M, Medina-Sánchez M, Mayorga-Martinez CC, Merkoçi A (2014) Micromotor enhanced microarray technology for protein detection. Small 10(13):2542–2548

Van Nguyen K, Minteer SD (2015) DNA-functionalized Pt nanoparticles as catalysts for chemically powered micromotors: toward signal-on motion-based DNA biosensor. Chem Commun 51(23):4782–4784

Jurado-Sánchez B, Pacheco M, Rojo J, Escarpa A (2017) Magnetocatalytic graphene quantum dots Janus micromotors for bacterial endotoxin detection. Angew Chem Int Ed 56(24):6957–6961

Orozco J, García-Gradilla V, D’Agostino M, Gao W, Cortes A, Wang J (2013) Artificial enzyme-powered microfish for water-quality testing. ACS Nano 7(1):818–824

Jurado-Sánchez B, Wang J (2018) Micromotors for environmental applications: a review. Environ Sci: Nano 5(7):1530–1544

Yang W, Li J, Xu Z, Yang J, Liu Y, Liu L (2019) A Eu-MOF/EDTA-NiAl-CLDH fluorescent micromotor for sensing and removal of Fe3+ from water. J Mater Chem C 7(33):10297–10308

Wu Z, Li T, Gao W, Xu T, Jurado-Sánchez B, Li J, Gao W, He Q, Zhang L, Wang J (2015) Cell-membrane-coated synthetic nanomotors for effective biodetoxification. Adv Funct Mater 25(25):3881–3887

de Ávila BE-F, Angsantikul P, Ramírez-Herrera DE, Soto F, Teymourian H, Dehaini D, Chen Y, Zhang L, Wang J (2018) Hybrid biomembrane–functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins. Sci Robot 3(18):eaat0485