Micromechanical response analysis of Ti-Ni shape memory alloy undergoing martensitic reorientation and detwinning
Tài liệu tham khảo
Kahn, 1998, The tini shape-memory alloy and its applications for mems, J. Micromech. Microeng., 8, 213, 10.1088/0960-1317/8/3/007
San Juan, 2008, Superelasticity and shape memory in micro-and nanometer-scale pillars, Adv. Mater., 20, 272, 10.1002/adma.200701527
Fu, 2004, Tini-based thin films in mems applications: a review, Sensor Actuator A Phys., 112, 395, 10.1016/j.sna.2004.02.019
Wang, 2014, Computational martensite re-orientation in shape memory alloys and the related hysteretic dynamics, Model. Simulat. Mater. Sci. Eng., 22, 045006, 10.1088/0965-0393/22/4/045006
Bouville, 2008, Microstructure and mechanical properties of constrained shape-memory alloy nanograins and nanowires, Acta Mater., 56, 3558, 10.1016/j.actamat.2008.03.041
Ball, 1989, Fine phase mixtures as minimizers of energy, 647
Hane, 1999, Microstructure in the cubic to monoclinic transition in titanium–nickel shape memory alloys, Acta Mater., 47, 2603, 10.1016/S1359-6454(99)00143-3
Tuma, 2016, Size effects in martensitic microstructures: finite-strain phase field model versus sharp-interface approach, J. Mech. Phys. Solid., 95, 284, 10.1016/j.jmps.2016.04.013
Miyazaki, 1989, The shape memory mechanism associated with the martensitic transformation in ti ni alloys—ii. variant coalescence and shape recovery, Acta Metall., 37, 1885, 10.1016/0001-6160(89)90073-4
Miyazaki, 1989, The shape memory mechanism associated with the martensitic transformation in ti ni alloys—i. self-accommodation, Acta Metall., 37, 1873, 10.1016/0001-6160(89)90072-2
Bhattacharya, 1992, Self-accommodation in martensite, Arch. Ration. Mech. Anal., 120, 201, 10.1007/BF00375026
Krishnan, 1998, The self accommodating martensitic microstructure of ni ti shape memory alloys, Acta Mater., 46, 1439, 10.1016/S1359-6454(98)00032-9
Onda, 1992, Electron microscopy study of twins in martensite in a ti-50.0 at% ni alloy, Mater. Trans., JIM, 33, 354, 10.2320/matertrans1989.33.354
Krishnan, 2000, A novel b19 martensite in nickel titanium shape memory alloys, Acta Mater., 48, 1325, 10.1016/S1359-6454(99)00423-1
Madangopal, 1992, The lattice invariant shear in ni ti shape memory alloy martensites, Scripta Metall. Mater., 27, 1627, 10.1016/0956-716X(92)90156-9
Knowles, 1981, The crystallography of the martensitic transformation in equiatomic nickel-titanium, Acta Metall., 29, 101, 10.1016/0001-6160(81)90091-2
Schroeder, 1977, The formation of martensite and the mechanism of the shape memory effect in single crystals of cu-zn alloys, Acta Metall., 25, 13751383, 10.1016/0001-6160(77)90069-4
Mohamed, 1977, Deformation behaviour and shape memory effect of near equi-atomic niti alloy, J. Mater. Sci., 12, 469, 10.1007/BF00540269
Xie, 1998, Microstructure of niti shape memory alloy due to tension–compression cyclic deformation, Acta Mater., 46, 1989, 10.1016/S1359-6454(97)00379-0
Liu, 1998, Asymmetry of stress–strain curves under tension and compression for niti shape memory alloys, Acta Mater., 46, 4325, 10.1016/S1359-6454(98)00112-8
Liu, 1999, Effect of texture orientation on the martensite deformation of niti shape memory alloy sheet, Acta Mater., 47, 645, 10.1016/S1359-6454(98)00376-0
Levitas, 2010, Surface tension and energy in multivariant martensitic transformations: phase-field theory, simulations, and model of coherent interface, Phys. Rev. Lett., 105, 165701, 10.1103/PhysRevLett.105.165701
Levitas, 2011, Phase-field approach to martensitic phase transformations: effect of martensite–martensite interface energy, Int. J. Mater. Res., 102, 652, 10.3139/146.110529
Javanbakht, 2016, Martensitic phase transformations in shape memory alloy: phase field modeling with surface tension effect, Comput. Mater. Sci., 115, 137, 10.1016/j.commatsci.2015.10.037
Moelans, 2008, An introduction to phase-field modeling of microstructure evolution, Calphad, 32, 268, 10.1016/j.calphad.2007.11.003
Chen, 2002, Phase-field models for microstructure evolution, Annu. Rev. Mater. Res., 32, 113, 10.1146/annurev.matsci.32.112001.132041
Thamburaja, 2014, A multiscale taylor model-based constitutive theory describing grain growth in polycrystalline cubic metals, J. Mech. Phys. Solid., 63, 1, 10.1016/j.jmps.2013.10.009
Jamshidian, 2014, Phase field modelling of stressed grain growth: analytical study and the effect of microstructural length scale, J. Comput. Phys., 261, 23, 10.1016/j.jcp.2013.12.022
Jamshidian, 2014, Phase field modeling of ideal grain growth in a distorted microstructure, Comput. Mater. Sci., 95, 663, 10.1016/j.commatsci.2014.08.024
Jamshidian, 2016, A multiscale coupled finite-element and phase-field framework to modeling stressed grain growth in polycrystalline thin films, J. Comput. Phys., 327, 779, 10.1016/j.jcp.2016.09.061
Jafari, 2017, Constitutive modeling of strain induced grain boundary migration via coupling crystal plasticity and phase-field methods, Int. J. Plast., 99, 19, 10.1016/j.ijplas.2017.08.004
Jin, 2001, Three-dimensional phase field model of low-symmetry martensitic transformation in polycrystal: simulation of ζ 2 martensite in aucd alloys, Acta Mater., 49, 2309, 10.1016/S1359-6454(01)00108-2
Ahluwalia, 2004, Landau theory for shape memory polycrystals, Acta Mater., 52, 209, 10.1016/j.actamat.2003.09.015
Mamivand, 2014, Shape memory effect and pseudoelasticity behavior in tetragonal zirconia polycrystals: a phase field study, Int. J. Plast., 60, 71, 10.1016/j.ijplas.2014.03.018
Zhong, 2014, Phase-field modeling of martensitic microstructure in niti shape memory alloys, Acta Mater., 75, 337, 10.1016/j.actamat.2014.04.013
Thamburaja, 2005, Constitutive equations for martensitic reorientation and detwinning in shape-memory alloys, J. Mech. Phys. Solid., 53, 825, 10.1016/j.jmps.2004.11.004
Pan, 2007, Multi-axial behavior of shape-memory alloys undergoing martensitic reorientation and detwinning, Int. J. Plast., 23, 711, 10.1016/j.ijplas.2006.08.002
Thamburaja, 2005, Martensitic reorientation and shape-memory effect in initially textured polycrystalline ti–ni sheet, Acta Mater., 53, 3821, 10.1016/j.actamat.2005.03.054
Fang, 1998, Stress–strain relation of cualni sma single crystal under biaxial loading—constitutive model and experiments, Acta Mater., 47, 269, 10.1016/S1359-6454(98)00303-6
Matsumoto, 1987, Crystallography of martensitic transformation in ti ni single crystals, Acta Metall., 35, 2137, 10.1016/0001-6160(87)90042-3
Lu, 1998, A self-consistent model for the stress–strain behavior of shape-memory alloy polycrystals, Acta Mater., 46, 5423, 10.1016/S1359-6454(98)00203-1
Gall, 1999, The role of texture in tension–compression asymmetry in polycrystalline niti, Int. J. Plast., 15, 69, 10.1016/S0749-6419(98)00060-6
Boyd, 1996, A thermodynamical constitutive model for shape memory materials. part i. the monolithic shape memory alloy, Int. J. Plast., 12, 805, 10.1016/S0749-6419(96)00030-7