Micromechanical Analysis of SiC/Ti6Al4V Composite Under Complex Stress State

Springer Science and Business Media LLC - Tập 29 - Trang 1083-1104 - 2022
Pengjian Zou1, Xuming Niu1, Xihui Chen1, Zhigang Sun1,2, Yan Liu1, Yingdong Song1,2,3
1Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, P.R. China
2Key Laboratory of Aero-Engine Thermal Environment and Structure, Ministry of Industry and Information Technology, Nanjing, P.R. China
3State Key Laboratory of Mechanics and Control Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, P.R. China

Tóm tắt

Due to the complexity of micro-damage and boundary conditions in complex stress state, most micro-mechanical analyses of continuous SiC fiber-reinforced titanium matrix (SiC/Ti) composite mainly focus on in-plane stress state, which have not taken out-of-plane loadings into consideration. In this paper, a three-dimensional finite element model (FEM) has been developed to realize micro-mechanical analysis of SiC/Ti composite under complex stress state. The model is composed of a representative volume element (RVE). The effects of matrix plasticity, interface debonding and residual thermal stress are considered. The unified periodic boundary conditions and mixed-mode damage evolution law of the interface were adopted to make the RVE applicable in complex stress state. Single fiber push-out tests were carried out to estimate the interfacial shear strength. Good agreement between the simulation results and experiment data of uniaxial tension proved the model validity. The simulation results indicate that out-of-plane loadings have great influence on mechanical property degradation of SiC/Ti6Al4V composite. Besides, the interface debonding areas and matrix plasticity regions are no longer bilateral symmetrical under the effect of transverse shear load.

Tài liệu tham khảo

Hayat, M.D., Singh, H., He, Z., Cao, P.: Titanium metal matrix composites: An overview. Compos Part A Appl Sci Manuf 121, 418–438 (2019). https://doi.org/10.1016/j.compositesa.2019.04.005 Sivakumar, G., Ananthi, V., Ramanathan, S.: Production and mechanical properties of nano SiC particle reinforced Ti–6Al–4V matrix composite. Trans Nonferrous Met Soc China 27, 82–90 (2017). https://doi.org/10.1016/S1003-6326(17)60009-8 Lino Alves, F.J., Baptista, A.M., Marques, A.T.: 3 - Metal and ceramic matrix composites in aerospace engineering. Advanced Composite Materials for Aerospace Engineering. Elsevier (2016) https://doi.org/10.1016/B978-0-08-100037-3.00003-1 Zhang, G., Zhao, M., Lu, S., Zhang, S.: Development of Research on Aeroengine Bling Structure. Aeronaut Manuf Technol. 000, 50–54 (2013) Lütjering, G., Williams, J.C.: Titanium. Springer Science & Business Media (2007) Aghdam, M.M., Pavier, M.J., Smith, D.J.: Micro-mechanics of off-axis loading of metal matrix composites using finite element analysis. Int. J. Solids Struct. 38, 3905–3925 (2001). https://doi.org/10.1016/S0020-7683(00)00248-1 Behera, N., Pandey, K.M., Deoghare, A.B., Dey, A.: Modeling & Simulation of Interface Stability in Metal Matrix Composites Subjected to off-axis loading using Cohesive Zone Model under Elevated Temperature: A Review. Mater today Proc 5, 20085–20091 (2018) Liu, N., Jeffers, A.E.: Isogeometric analysis of laminated composite and functionally graded sandwich plates based on a layerwise displacement theory. Compos. Struct. 176, 143–153 (2017) Liu, N., Ren, X., Lua, J.: An isogeometric continuum shell element for modeling the nonlinear response of functionally graded material structures. Compos. Struct. 237, 111893- (2020) Liu, N., Beata, P.A., Jeffers, A.E.: A mixed isogeometric analysis and control volume approach for heat transfer analysis of nonuniformly heated plates. Liu, N., Cui, X., Xiao, J., Lua, J., Phan, N.: A simplified continuum damage mechanics based modeling strategy for cumulative fatigue damage assessment of metallic bolted joints. Int J Fatigue 131, 105302.1-105302.10 (2020) Liu, N., Jeffers, A.E.: Feature-preserving rational Bezier triangles for isogeometric analysis of higher-order gradient damage models. Comput Methods Appl Mech Eng 357, 112585.1-112585.19 (2019) Majumdar, B.S., Matikas, T.E., Miracle, D.B.: Experiments and analysis of fiber fragmentation in single and multiple-fiber SiC/Ti-6Al-4V metal matrix composites. Compos. Part B Eng. 29, 131–145 (1998) Li, J.-K., Yang, Y.-Q., Yuan, M.-N., Xian, L.U.O., Li, L.-L.: Effect of properties of SiC fibers on longitudinal tensile behavior of SiCf/Ti-6Al-4V composites. Trans. Nonferrous Met. Soc. China. 18, 523–530 (2008) Gundel, D.B., Wawner, F.E.: Experimental and theoretical assessment of the longitudinal tensile strength of unidirectional SiC-fiber/titanium-matrix composites. Compos. Sci. Technol. 57, 471–481 (1997) Smith, R.L.: A Probability Model for Fibrous Composites with Local Load Sharing. Proc. R. Soc. A Math. (1980) Curtin, W.A.: Theory of Mechanical Properties of Ceramic-Matrix Composites. J. Am. Ceram. Soc. 74, 2837–2845 (1991) Gundel, D.B., Miracle, D.B.: The Influence of Interface Structure and Composition on the Response of Single-Fiber SiC/Ti-6Al-4V Composites to Transverse Tension. Appl. Compos. Mater. 5, 95–108 (1998) Aghdam, M.M., Falahatgar, S.R.: Micromechanical modeling of interface damage of metal matrix composites subjected to transverse loading. Compos. Struct. 66, 415–420 (2004) Lou, J.H., Yang, Y.Q., Luo, X., Yuan, M.N., Feng, G.H.: The analysis on transverse tensile behavior of SiC/Ti–6Al–4V composites by finite element method. Mater. Des. 31, 3949–3953 (2010) Aghdam, M.M., Gorji, M., Falahatgar, S.R.: Interface damage of SiC/Ti metal matrix composites subjected to combined thermal and axial shear loading. Comput Mater Sci 46, 626–631 (2009). https://doi.org/10.1016/j.commatsci.2009.04.013 Aghdam, M.M., Pavier, M.J., Smith, D.J.: Micromechanical modelling of metal matrix composites subjected to combined thermal and shear loading. Comput. Methods Compos. Mater. VI. (1998) Aghdam, M.M., Falahatgar, S.R., Gorji, M.: Micromechanical Consideration Of Interface Damage In Fiber Reinforced Ti-alloy Under Various Combined Loading Conditions. Compos. Sci Technol. 68, 3406–3411 (2008) Aghdam, M.M., Hosseini, S.M.A., Morsali, S.R.: Simulation of interface damage in metal matrix composites under off-axis loading using cohesive zone model. Comput. Mater. Sci. 108, 42–47 (2015) Gundel, D.B., Warrier, S.G., Miracle, D.B.: The transverse tensile behavior of SiC-fiber/Ti–6Al–4V composites 2. Stress distribution and interface failure. Compos Sci Technol 59, 1087–1096 (1999) Sun, Z., Sun, J., Chang, Y., Sun, W., Qi, L., Song, Y.: Axial Tensile Failure Analysis of SiC f/Ti Composite Based on Continuum Cohesive Zone Model. J. Mater. Eng. Perform. 28, 956–966 (2019) Zahl, D.B., Schmauder, S., McMeeking, R.M.: Transverse strength of metal matrix composites reinforced with strongly bonded continuous fibers in regular arrangements. Acta Metall. Mater. 42, 2983–2997 (1994) Nimmer, R.P., Bankert, R.J., Russell, E.S., Smith, G.A., Wright, P.K.: Micromechanical modeling of fiber/matrix interface effects in transversely loaded SiC/Ti-6-4 metal matrix composites. J. Compos. Technol. Res. 13, 3–13 (1991) Lou, J.H., Yang, Y.Q., Sun, Q., Li, J., Luo, X.: Study on longitudinal tensile properties of SiCf/Ti–6Al–4V composites with different interfacial shear strength. Mater. Sci. Eng. A. 529, 88–93 (2011) Needleman, A.: An analysis of tensile decohesion along an interface. J. Mech. Phys. Solids. 38, 289–324 (1990) Needleman, A.: Numerical modeling of crack growth under dynamic loading conditions. Comput. Mech. 19, 463–469 (1997) Xia, Z., Zhang, Y., Ellyin, F.: A unified periodical boundary conditions for representative volume elements of composites and applications. Int. J. Solids Struct. 40, 1907–1921 (2003) Mahmoodi, M.J., Aghdam, M.M., Shakeri, M.: Micromechanical modeling of interface damage of metal matrix composites subjected to off-axis loading. Mater. Des. 31, 829–836 (2010) Mahmoodi, M.J., Aghdam, M.M.: Damage analysis of fiber reinforced Ti-alloy subjected to multi-axial loading—A micromechanical approach. Mater. ence Eng. A. 528, 7983–7990 (2011) Stolyarov, V.V., Zhu, Y.T., Lowe, T.C., Valiev, R.Z.: Microstructure and properties of pure Ti processed by ECAP and cold extrusion. Mater. ence Eng. A. A303, 82–89 (2001) Velez, K., Maximilien, S., Damidot, D., Fantozzi, G., Sorrentino, F.: Determination by nanoindentation of elastic modulus and hardness of pure constituents of Portland cement clinker. Cem. Concr. Res. 31, 555–561 (2001) Li, D.S., Wisnom, M.R.: Micromechanical Modelling of SCS-6 Fibre Reinforced Ti-6A1-4V under Transverse Tension—Effect of Fibre Coating. J. Compos. Mater. 30, 561–588 (1996). https://doi.org/10.1177/002199839603000502 Warrier, S.G., Gundel, D.B., Majumdar, B.S., Miracle, D.B.: Stress distribution in a transversely loaded cross-shaped single fiber SCS-6/Ti-6Al-4V composite. Scr. Mater. 34, 293–299 (1996) Aboudi, J.: Mechanics of composite materials-A unified micromechanical approach. STIA. 93, 29778 (1991) Adams, D.F., Crane, D.A.: Finite element micromechanical analysis of a unidirectional composite including longitudinal shear loading. Comput. Struct. 18, 1153–1165 (1984) Wang, X., Zhang, J., Wang, Z., Liang, W., Zhou, L.: Finite element simulation of the failure process of single fiber composites considering interface properties. Compos. Part B Eng. 45, 573–580 (2013) Carozzi, F.G., Colombi, P., Fava, G., Poggi, C.: A cohesive interface crack model for the matrix–textile debonding in FRCM composites. Compos. Struct. 143, 230–241 (2016) Benzeggagh, M.L., Kenane, M.: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. Technol. 56, 439–449 (1996) Camanho, P.P., Dávila, C.G.: Mixed-mode decohesion finite elements for the simulation of delamination in composite materials. (2002) Warrier, S.G., Rangaswamy, P., Bourke, M.A.M., Krishnamurthy, S.: Assessment of the fiber/matrix interface bond strength in SiC/Ti-6Al-4V composites. Mater. Sci. Eng. A. 259, 220–227 (1999) Gundel, D.B., Warrier, S.G., Miracle, D.B.: The interface debond stress in single and multiple SiC fiber/Ti-6Al-4V composites under transverse tension. Acta Mater. 45, 1275–1284 (1997) Le Petitcorps, Y., Pailler, R., Naslain, R.: The fibre/matrix interfacial shear strength in titanium alloy matrix composites reinforced by silicon carbide or boron CVD filaments. Compos. Sci. Technol. 35, 207–214 (1989) Chandra, N., Ananth, C.R.: Analysis of interfacial behavior in MMCs and IMCs by the use of thin-slice push-out tests. Compos. Sci. Technol. 54, 87–100 (1995) Thomas, M.P., Winstone, M.R.: Effect of the angle between fibers and tensile axis on static properties of unidirectional reinforced titanium MMC. In: Proceedings of the European Conference on Composite Materials,(ECCM-8). pp. 147–154 (1998) Li, D.S., Wisnom, M.R.: Unidirectional Tensile Stress-Strain Response of BP-SiC Fiber Reinforced Ti-6Al-4V. J. Compos. Technol. Res. 16, 225–233 (1994). https://doi.org/10.1520/CTR10411J Thomas, M.P.: Tensile properties of Ti-6–4/SM 1240 titanium metal matrix composite with off-axis fiber. (1997) Li, S., Wongsto, A.: Unit cells for micromechanical analyses of particle-reinforced composites. Mech. Mater. 36, 543–572 (2004) Zhang, C., Xu, X., Yan, X.: Unit cells for micromechanical analyses of particle-reinforced composites. Mech Mater. 34, 1636–1645 (2013)