Microglia activation-induced mesencephalic dopaminergic neurodegeneration — an in vitro model for Parkinson’s disease
Tóm tắt
Uncontrolled and chronic microglia activation has been implicated in the process of dopaminergic neuron degeneration in sporadic Parkinson’s disease (PD). Elevated proinflammatory mediators, presumably from activated microglia (e.g., cytokines, PGE2, nitric oxide, and superoxide radical), have been observed in PD patients and are accompanied by dopaminergic neuronal loss. Preclinical studies have demonstrated the deleterious effects of proinflammatory mediators in various in vivo and in vitro models of PD. The use of in vitro studies provides a unique tool to investigate the interaction between neurons and microglia and is especially valuable when considering the role of activated microglia in neuronal death. Here we summarize findings highlighting the potential mechanisms of microgliamediated neurodegeneration in PD.
Tài liệu tham khảo
Arimoto T, Bing G (2003). Up-regulation of inducible nitric oxide synthase in the substantia nigra by lipopolysaccharide causes microglial activation and neurodegeneration. Neurobiol Dis, 12(1): 35–45
Arimoto T, Choi D Y, Lu X, Liu M, Nguyen X V, Zheng N, Stewart C A, Kim H C, Bing G (2007). Interleukin-10 protects against inflammation-mediated degeneration of dopaminergic neurons in substantia nigra. Neurobiol Aging, 28(6): 894–906
Betarbet R, Sherer T B, MacKenzie G, Garcia-Osuna M, Panov A V, Greenamyre J T (2000). Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci, 3(12): 1301–1306
Bing G Y, Lu N A, et al (1998). Microglia Mediaed Dopaminergic Cell Death in the Substantia nigra: a New Animal Model for Parkinson’s Disease. Neuroscience Abstracts
Blandini F, Armentero M T (2012). Animal models of Parkinson’s disease. FEBS J, 279(7): 1156–1166
Block M L, Hong J S (2005). Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol, 76(2): 77–98
Boka G, Anglade P, Wallach D, Javoy-Agid F, Agid Y, Hirsch E C (1994). Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson’s disease. Neurosci Lett, 172(1–2): 151–154
Brooks A I, Chadwick C A, Gelbard H A, Cory-Slechta D A, Federoff H J (1999). Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Res, 823(1–2): 1–10
Cannon J R, Tapias V, Na HM, Honick A S, Drolet R E, Greenamyre J T (2009). A highly reproducible rotenone model of Parkinson’s disease. Neurobiol Dis, 34(2): 279–290
Carrasco E, Casper D, Werner P (2007). PGE(2) receptor EP1 renders dopaminergic neurons selectively vulnerable to low-level oxidative stress and direct PGE(2) neurotoxicity. J Neurosci Res, 85(14): 3109–3117
Castaño A, Herrera A J, Cano J, Machado A (1998). Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. J Neurochem, 70(4): 1584–1592
Choi D Y, Liu M, Hunter R L, Cass WA, Pandya J D, Sullivan P G, Shin E J, Kim H C, Gash D M, Bing G (2009). Striatal neuroinflammation promotes Parkinsonism in rats. PLoS ONE, 4(5): e5482
Choi W S, Eom D S, Han B S, Kim W K, Han B H, Choi E J, Oh T H, Markelonis G J, Cho J W, Oh Y J (2004). Phosphorylation of p38 MAPK induced by oxidative stress is linked to activation of both caspase-8- and -9-mediated apoptotic pathways in dopaminergic neurons. J Biol Chem, 279(19): 20451–20460
Dehmer T, Lindenau J, Haid S, Dichgans J, Schulz J B (2000). Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo. J Neurochem, 74(5): 2213–2216
Du Y, Ma Z, Lin S, Dodel R C, Gao F, Bales K R, Triarhou L C, Chernet E, Perry K W, Nelson D L, Luecke S, Phebus L A, Bymaster F P, Paul S M (2001). Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci USA, 98(25): 14669–14674
Fontaine V, Mohand-Said S (2002). Neurodegenerative and neuroprotective effects of tumor necrosis factor (TNF) in retinal ischemia: opposite roles of TNF receptor 1 and TNF receptor 2. The Journal of neuroscience, 22(7): RC216
Gao H M, Jiang J, Wilson B, Zhang W, Hong J S, Liu B (2002). Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem, 81(6): 1285–1297
Gao H M, Kotzbauer P T (2008). Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration. The Journal of neuroscience, 28(30): 7687–7698
Gao H M, Zhou H (2011). HMGB1 acts on microglia Mac1 to mediate chronic neuroinflammation that drives progressive neurodegeneration.” J Neurosci, 31(3): 1081–1092
Gao L, Zackert W E, Hasford J J, Danekis M E, Milne G L, Remmert C, Reese J, Yin H, Tai H H, Dey S K, Porter N A, Morrow J D (2003). Formation of prostaglandins E2 and D2 via the isoprostane pathway: a mechanism for the generation of bioactive prostaglandins independent of cyclooxygenase. J Biol Chem, 278(31): 28479–28489
Gayle D A, Ling Z, Tong C, Landers T, Lipton JW, Carvey P M (2002). Lipopolysaccharide (LPS)-induced dopamine cell loss in culture: roles of tumor necrosis factor-alpha, interleukin-1beta, and nitric oxide. Brain Res Dev Brain Res, 133(1): 27–35
Ghatan S, Larner S, Kinoshita Y, Hetman M, Patel L, Xia Z, Youle R J, Morrison R S (2000). p38 MAP kinase mediates bax translocation in nitric oxide-induced apoptosis in neurons. J Cell Biol, 150(2): 335–347
Gomez-Lazaro M, Galindo M F, Concannon C G, Segura M F, Fernandez-Gomez F J, Llecha N, Comella J X, Prehn J H, Jordan J (2008). 6-Hydroxydopamine activates the mitochondrial apoptosis pathway through p38 MAPK-mediated, p53-independent activation of Bax and PUMA. J Neurochem, 104(6): 1599–1612
Good P F, Hsu A, Werner P, Perl D P, Olanow C W (1998). Protein nitration in Parkinson’s disease. J Neuropathol Exp Neurol, 57(4): 338–342
Hald A, Lotharius J (2005). Oxidative stress and inflammation in Parkinson’s disease: is there a causal link? Exp Neurol, 193(2): 279–290
Hartmann A, Troadec J D, Hunot S, Kikly K, Faucheux B A, Mouatt-Prigent A, Ruberg M, Agid Y, Hirsch E C (2001). Caspase-8 is an effector in apoptotic death of dopaminergic neurons in Parkinson’s disease, but pathway inhibition results in neuronal necrosis. J Neurosci, 21(7): 2247–2255
He Y, Appel S, Le W (2001). Minocycline inhibits microglial activation and protects nigral cells after 6-hydroxydopamine injection into mouse striatum. Brain Res, 909(1–2): 187–193
Herrera A J, Castaño A, Venero J L, Cano J, Machado A (2000). The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiol Dis, 7(4): 429–447
Hodara R, Norris E H, Giasson B I, Mishizen-Eberz A J, Lynch D R, Lee V M, Ischiropoulos H (2004). Functional consequences of alphasynuclein tyrosine nitration: diminished binding to lipid vesicles and increased fibril formation. J Biol Chem, 279(46): 47746–47753
Hunot S, Boissière F, Faucheux B, Brugg B, Mouatt-Prigent A, Agid Y, Hirsch E C (1996). Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience, 72(2): 355–363
Hunot S, Dugas N (1999). FcepsilonRII/CD23 is expressed in Parkinson’s disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. The Journal of neuroscience, 19(9): 3440–3447
Hunter R L, Cheng B, Choi D Y, Liu M, Liu S, Cass W A, Bing G (2009). Intrastriatal lipopolysaccharide injection induces parkinsonism in C57/B6 mice. J Neurosci Res, 87(8): 1913–1921
Hunter R L, Dragicevic N, Seifert K, Choi D Y, Liu M, Kim H C, Cass W A, Sullivan P G, Bing G (2007). Inflammation induces mitochondrial dysfunction and dopaminergic neurodegeneration in the nigrostriatal system. J Neurochem, 100(5): 1375–1386
Iravani M M, Kashefi K, Mander P, Rose S, Jenner P (2002). Involvement of inducible nitric oxide synthase in inflammationinduced dopaminergic neurodegeneration. Neuroscience, 110(1): 49–58
Jenner P, Olanow C W (1996). Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology, 47(6 Suppl 3): S161-S170
Kim W G, Mohney R P (2000). Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci, 20(16): 6309–6316
Kirik D, Rosenblad C, Björklund A (1998). Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat. Exp Neurol, 152(2): 259–277
Knott C, Stern G, Wilkin G P (2000). Inflammatory regulators in Parkinson’s disease: iNOS, lipocortin-1, and cyclooxygenases-1 and-2. Mol Cell Neurosci, 16(6): 724–739
Langston J W, Ballard P, Tetrud J W, Irwin I (1983). Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 219(4587): 979–980
Lapointe N, St-Hilaire M (2004). Rotenone induces non-specific central nervous system and systemic toxicity. FASEB journal, 18(6): 717–719
Li R, Yang L (2004). Tumor necrosis factor death receptor signaling cascade is required for amyloid-beta protein-induced neuron death. The Journal of neuroscience, 24(7): 1760–1771
Liberatore G T, Jackson-Lewis V, Vukosavic S, Mandir A S, Vila M, McAuliffe W G, Dawson V L, Dawson T M, Przedborski S (1999). Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med, 5(12): 1403–1409
Loeffler D A, DeMaggio A J, Juneau P L, Havaich M K, LeWitt P A (1994). Effects of enhanced striatal dopamine turnover in vivo on glutathione oxidation. Clin Neuropharmacol, 17(4): 370–379
Long-Smith C M, Collins L, Toulouse A, Sullivan A M, Nolan Y M (2010). Interleukin-1β contributes to dopaminergic neuronal death induced by lipopolysaccharide-stimulated rat glia in vitro. J Neuroimmunol, 226(1–2): 20–26
Lozano A M, Lang A E, Hutchison W D, Dostrovsky J O (1998). New developments in understanding the etiology of Parkinson’s disease and in its treatment. Curr Opin Neurobiol, 8(6): 783–790
Marchetti L, Klein M, Schlett K, Pfizenmaier K, Eisel U L (2004). Tumor necrosis factor (TNF)-mediated neuroprotection against glutamate-induced excitotoxicity is enhanced by N-methyl-Daspartate receptor activation. Essential role of a TNF receptor 2-mediated phosphatidylinositol 3-kinase-dependent NF-kappa B pathway. J Biol Chem, 279(31): 32869–32881
McCoy M K, Martinez T N (2006). Blocking soluble tumor necrosis factor signaling with dominant-negative tumor necrosis factor inhibitor attenuates loss of dopaminergic neurons in models of Parkinson’s disease. The Journal of neuroscience, 26(37): 9365–9375
McGeer P L, Itagaki S, Akiyama H, McGeer E G (1988a). Rate of cell death in parkinsonism indicates active neuropathological process. Ann Neurol, 24(4): 574–576
McGeer P L, Itagaki S, Boyes B E, McGeer E G (1988b). Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology, 38(8): 1285–1291
McGeer P L, Schwab C, Parent A, Doudet D (2003). Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Ann Neurol, 54(5): 599–604
Mogi M, Harada M, Kondo T, Riederer P, Inagaki H, Minami M, Nagatsu T (1994a). Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci Lett, 180(2): 147–150
Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T (1994b). Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett, 165(1–2): 208–210
Mogi M, Togari A, Kondo T, Mizuno Y, Komure O, Kuno S, Ichinose H, Nagatsu T (2000). Caspase activities and tumor necrosis factor receptor R1 (p55) level are elevated in the substantia nigra from parkinsonian brain. J Neural Transm, 107(3): 335–341
Murray J, Taylor S W, Zhang B, Ghosh S S, Capaldi R A (2003). Oxidative damage to mitochondrial complex I due to peroxynitrite: identification of reactive tyrosines by mass spectrometry. J Biol Chem, 278(39): 37223–37230
Nagatsu T, Mogi M, Ichinose H, Togari A (2000). Changes in cytokines and neurotrophins in Parkinson’s disease. J Neural Transm Suppl, (60): 277–290
Nakamura Y (2002). Regulating factors for microglial activation. Biol Pharm Bull, 25(8): 945–953
Olanow C W, Tatton W G (1999). Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci, 22(1): 123–144
Pawate S, Shen Q, Fan F, Bhat N R (2004). Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma. J Neurosci Res, 77(4): 540–551
Paxinou E, Chen Q (2001). Induction of alpha-synuclein aggregation by intracellular nitrative insult. The Journal of neuroscience, 21(20): 8053–8061
Perese D A, Ulman J, Viola J, Ewing S E, Bankiewicz K S (1989). A 6-hydroxydopamine-induced selective parkinsonian rat model. Brain Res, 494(2): 285–293
Przedborski S, Chen Q, Vila M, Giasson B I, Djaldatti R, Vukosavic S, Souza J M, Jackson-Lewis V, Lee V M, Ischiropoulos H (2001). Oxidative post-translational modifications of alpha-synuclein in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. J Neurochem, 76(2): 637–640
Przedborski S, Levivier M, Jiang H, Ferreira M, Jackson-Lewis V, Donaldson D, Togasaki D M (1995). Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamine. Neuroscience, 67(3): 631–647
Qin L, Liu Y, Wang T, Wei S J, Block M L, Wilson B, Liu B, Hong J S (2004). NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem, 279(2): 1415–1421
Ransohoff R M, Perry V H (2009). Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol, 27(1): 119–145
Shavali S, Combs C K, Ebadi M (2006). Reactive macrophages increase oxidative stress and alpha-synuclein nitration during death of dopaminergic neuronal cells in co-culture: relevance to Parkinson’s disease. Neurochem Res, 31(1): 85–94
Sherer T B, Kim J H, Betarbet R, Greenamyre J T (2003). Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol, 179(1): 9–16
Sherer T B, Richardson J R, Testa C M, Seo B B, Panov A V, Yagi T, Matsuno-Yagi A, Miller GW, Greenamyre J T (2007). Mechanism of toxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson’s disease. J Neurochem, 100(6): 1469–1479
Tiwari M, Lopez-Cruzan M, Morgan W W, Herman B (2011). Loss of caspase-2-dependent apoptosis induces autophagy after mitochondrial oxidative stress in primary cultures of young adult cortical neurons. J Biol Chem, 286(10): 8493–8506
Vijitruth R, Liu M, Choi D Y, Nguyen X V, Hunter R L, Bing G (2006). Cyclooxygenase-2 mediates microglial activation and secondary dopaminergic cell death in the mouse MPTP model of Parkinson’s disease. J Neuroinflammation, 3(1): 6
Wang, T., Pei, Z., et al (2005). MPP+-induced COX-2 activation and subsequent dopaminergic neurodegeneration. FASEB journal, 19(9): 1134–1136
Wu D C, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C, Choi D K, Ischiropoulos H, Przedborski S (2002). Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci, 22(5): 1763–1771
Wu D C, Teismann P, Tieu K, Vila M, Jackson-Lewis V, Ischiropoulos H, Przedborski S (2003). NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci USA, 100(10): 6145–6150
Xing B, Liu M, Bing G (2007). Neuroprotection with pioglitazone against LPS insult on dopaminergic neurons may be associated with its inhibition of NF-kappaB and JNK activation and suppression of COX-2 activity. J Neuroimmunol, 192(1–2): 89–98
Xing B, Xin T, Hunter R L, Bing G (2008). Pioglitazone inhibition of lipopolysaccharide-induced nitric oxide synthase is associated with altered activity of p38 MAP kinase and PI3K/Akt. J Neuroinflammation, 5(1): 4
Zhang F, Shi J S, Zhou H, Wilson B, Hong J S, Gao H M (2010). Resveratrol protects dopamine neurons against lipopolysaccharideinduced neurotoxicity through its anti-inflammatory actions. Mol Pharmacol, 78(3): 466–477
Zhang J, Perry G, Smith M A, Robertson D, Olson S J, Graham D G, Montine T J (1999). Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am J Pathol, 154(5): 1423–1429
Zhang J, Stanton D M, Nguyen X V, Liu M, Zhang Z, Gash D, Bing G (2005). Intrapallidal lipopolysaccharide injection increases iron and ferritin levels in glia of the rat substantia nigra and induces locomotor deficits. Neuroscience, 135(3): 829–838
Zhang W, Wang T (2005). Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB journal, 19(6): 533–542