Microfluidic alignment of collagen fibers for in vitro cell culture

Springer Science and Business Media LLC - Tập 8 - Trang 35-41 - 2006
Philip Lee1, Rob Lin1, James Moon1, Luke P. Lee1
1Biomolecular Nanotechnology Center, Berkeley Sensor and Actuator Center, Department of Bioengineering, University of California, Berkeley

Tóm tắt

Three dimensional gels of aligned collagen fibers were patterned in vitro using microfluidic channels. Collagen fiber orientation plays an important role in cell signaling for many tissues in vivo, but alignment has been difficult to realize in vitro. For microfluidic collagen fiber alignment, collagen solution was allowed to polymerize inside polydimethyl siloxane (PDMS) channels ranging from 10–400 μm in width. Collagen fiber orientation increased with smaller channel width, averaging 12 ± 6 degrees from parallel for channels between 10 and 100 μm in width. In these channels 20–40% of the fibers were within 5 degrees of the channel axis. Bovine aortic endothelial cells expressing GFP-tubulin were cultured on aligned collagen substrate and found to stretch in the direction of the fibers. The use of artificially aligned collagen gels could be applied to the study of cell movement, signaling, growth, and differentiation.

Tài liệu tham khảo

H.A. Awad, D.L. Butler, G.P. Boivin, F.N. Smith and P. MalaviyaB. Huibregtse, and A.I. Caplan, Tissue Eng 5, 267–277 (1999).

A.O. Brightman, B.P. Rajwa, J.E. Sturgis, M.E. McCallister and J.P. Robinsonand S.L. Voytik-Harbin,Biopolymers 54, 222–234 (2000).

C.S. Chen, M. Mrksich, S. Huang and G.M. Whitesidesand D.E. Ingber, Science 276, 1425–1428 (1997).

D.T. Chiu, N.L. Jeon, S. Huang, R.S. Kane and C.J. WargoI.S. Choi, D.E. Ingber, and G.M. Whitesides, Proc Natl Acad Sci USA 97, 2408–2413 (2000).

C.J. Connon and K.M. MeekWound Repair Regen 11, 71–78 (2003).

E. Cukierman, R. Pankov and D.R. Stevensand K.M. Yamada, Science 294, 1708–1712 (2001).

M.J. Dalby, M.O. Riehle, S.J. Yarwood and C.D. Wilkinsonand A.S. Curtis, Exp Cell Res 284, 274–282 (2003).

N. Dubey and P.C. Letourneauand R.T. Tranquillo, Exp Neurol 158, 338–350 (1999).

H.J. Evans, J.K. Sweet, R.L. Price and M. Yostand R.L. Goodwin, Am J Physiol Heart Circ Physiol 285, H570–578 (2003).

A. Folch, A. Ayon, O. Hurtado and M.A. Schmidtand M. Toner, J Biomech Eng 121, 28–34 (1999).

J. Glass-Brudzinski, D. Perizzolo and D.M. Brunette, J Biomed Mater Res 61, 608–618 (2002).

D. Grant, M. Cid and M.C. Kibbeyand H. Kleinman, Lab Invest 67, 805-806; author reply 807–808(1992).

L.G. Griffith Ann N Y Acad Sci 961, 83–95 (2002).

S. Guido and R.T. TranquilloJ Cell Sci 105 (Pt 2), 317–331 (1993).

K.E. Kadler, D.F. Holmes and J.A. Trotterand J.A. Chapman, Biochem J 316(Pt 1), 1–11 (1996).

I. Kaverina and O. Krylyshkinaand J.V. Small, Int J Biochem Cell Biol 34, 746–761 (2002).

H.K. Kleinman, L. Luckenbill-Edds, F.W. Cannon and G.C. Sephel, Anal Biochem 166, 1–13(1987).

M. Kuzuya, S. Satake, M.A. Ramos, S. Kanda and T. KoikeK. Yoshino, S. Ikeda, and A. Iguchi, Exp Cell Res 248, 498–508 (1999).

N.L. Jeon, H. Baskaran, S.K. Dertinger, G.M. Whitesides and L. Van de Waterand M. Toner, Nat Biotechnol 20, 826–830 (2002).

V.A. Liu and W.E. Jastromband S.N. Bhatia, J Biomed Mater Res 60, 126–134 (2002).

G.R. Martin and H.K. KleinmanHepatology 1, 264–266 (1981).

N. Matsumoto, S. Horibe, N. Nakamura, T. Senda and K. Shinoand T. Ochi, Arch Orthop Trauma Surg 117, 215–221 (1998).

C. Miller and S. Jeftinijaand S. Mallapragada, Tissue Eng 7, 705–715 (2001).

C. Miller and S. Jeftinijaand S. Mallapragada, Tissue Eng 8, 367–378 (2002).

I. Nagata and A. Kawanaand N. Nakatsuji, Development 117, 401–408 (1993).

B.A. Nasseri, I. Pomerantseva, M.R. Kaazempur-Mofrad, F.W. Sutherland, T. Perry E. Ochoa, C.A.Thompson, J.E. Mayer, Jr., S.N. Oesterle, and J.P. Vacanti, Tissue Eng 9, 291–299 (2003).

S. Newman, M. Cloitre, C. Allain and G. Forgacsand D. Beysens, Biopolymers 41, 337–347 (1997).

R.H. Newton and K.M. MeekBiophys J 75, 2508–2512 (1998).

S.M. O'Connor, D.A. Stenger, K.M. Shaffer, and W. Ma, Neurosci Lett 304, 189–193 (2001).

T.J. O'Shaughnessy, H.J. Lin, and W. Ma, Neurosci Lett 340, 169–172 (2003).

G.D. Pins, D.L. Christiansen and R. Pateland F.H. Silver, Biophys J 73, 2164–2172 (1997).

A. Rajnicek and S. Britlandand C. McCaig, J Cell Sci 110(Pt 23), 2905–2913 (1997).

Z.M. Ruggeri Nat Med 8, 1227–1234 (2002).

J.P. Stegemann and R.M. NeremExp Cell Res 283, 146–155 (2003).

W. Tan and T.A. DesaiTissue Eng 9, 255–267 (2003).

R.G. Thakar, F. Ho, N.F. Huang and D. Liepmannand S. Li, Biochem Biophys Res Commun 307, 883–890 (2003).

O. Thoumine and R.M. Neremand P.R. Girard, Lab Invest 73, 565–576 (1995).

T.T. Tower and M.R. Neidertand R.T. Tranquillo, Ann Biomed Eng 30, 1221–1233 (2002).

R.T. Tranquillo, T.S. Girton, B.A. Bromberek and T.G. Triebesand D.L. Mooradian, Biomaterials 17, 349–357 (1996).

A.K. Vogt, L. Lauer and W. Knolland A. Offenhausser, Biotechnol Prog 19, 1562–1568 (2003).

S.L. Voytik-Harbin, B. Rajwa and J.P. Robinson, Methods Cell Biol 63, 583–597 (2001).

A. Webb, P. Clark, J. Skepper and A. Compstonand A. Wood, J Cell Sci 108 (Pt 8), 2747–2760 (1995).

B. Wojciak-Stothard, A. Curtis, W. Monaghan, K. MacDonald and C. Wilkinson, Exp Cell Res 223, 426–435 (1996).

M. Yoshinari, K. Matsuzaka, T. Inoue and Y. Odaand M. Shimono, J Biomed Mater Res A 65, 359–368(2003).