Microemulsions in Systems with Lecithin and Oleic Acid for Medical Use

Pleiades Publishing Ltd - Tập 18 - Trang 283-289 - 2023
N. M. Murashova1, E. S. Trofimova1, L. A. Gagueva1
1Mendeleev University of Chemical Technology of Russia, Moscow, Russia

Tóm tắt

Reverse microemulsions for use in medicine and cosmetics in systems containing lecithin (a mixture of phospholipids with a lecithin content of ~22 wt %), oleic acid, vaseline oil, vegetable oil, essential oil (in an amount of less than 5 wt %), and water are developed. The hydrodynamic diameter of the droplets of the microemulsions ranges from 15 to 80 nm. The microemulsions are stable when heated up to 45°C: the mass loss is less than 1%, and no phase transitions and chemical reactions accompanied by the absorption or release of heat are observed. The microemulsions possess a delayed release of water-soluble substances: 3.6% water-soluble dye Rhodamine C is released from the microemulsion in 7 h of dialysis.

Tài liệu tham khảo

M. Fanun, Curr. Opin. Colloid In. 17, 306 (2012). https://doi.org/10.1016/j.cocis.2012.06.001 M. J. Lawrence and G. D. Rees, Adv. Drug Delivery Rev. 64, 175 (2012). https://doi.org/10.1016/j.addr.2012.09.018 S. P. Callender, J. A. Mathews, K. Kobernyk, and S. D. Wettig, Int. J. Pharm. 526, 425 (2017). https://doi.org/10.1016/j.ijpharm.2017.05.005 T. Shukla, N. Upmanyu, M. Agrawal, et al., Biomed. Pharmacother. 108, 1477 (2018). https://doi.org/10.1016/j.biopha.2018.10.021 L. P. Alves, OliveiraK. Silva, SantosJ. A. Paixao, et al., J. Drug Delivery Sci. Tech. 60, 102008 (2020). https://doi.org/10.1016/j.jddst.2020.102008 D. Paolino, C. A. Ventura, S. Nistico, et al., Int. J. Pharm. 244, 21 (2002). M. Changez, M. Varshney, J. Chander, and A. M. Dinda, Colloids Surf. B 50, 18 (2006). https://doi.org/10.1016/j.colsurfb.2006.03.018 J. S. Yuan, M. Ansari, M. Samaan, and E. M. Acosta, Int. J. Pharm. 349, 130 (2008). https://doi.org/10.1016/j.ijpharm.2007.07.047 A. Das and R. K. Mitra, Colloid Polym. Sci. 292, 635 (2014). https://doi.org/10.1007/s00396-013-3110-y M. Xu, Q. Yu, Q. Zhao, et al., Drug. Dev. Ind. Pharm. 42, 280 (2016). https://doi.org/10.3109/03639045.2015.1047849 V. Savic, M. Todosijevic, T. Ilic, et al., Int. J. Pharm. 529, 491 (2017). https://doi.org/10.1016/j.ijpharm.2017.07.036 A. Basov, L. Fedulova, E. Vasilevskaya, et al., Saudi J. Biol. Sci. 28, 1826 (2021). https://doi.org/10.1016/j.sjbs.2020.12.028 N. M. Murashova, L. A. Prokopova, E. S. Trofimova, and E. V. Yurtov, J. Surfactants Deterg. 21, 635 (2018). https://doi.org/10.1002/jsde.12170 E. G. Kuznetsova, V. A. Ryzhikova, L. A. Salomatina, and V. I. Sevast’yanov, Russ. J. Transplantol. Artif. Organs 18, 152—162 (2016). https://doi.org/10.15825/1995-1191-2016-2-152-162 A. Herman and A. P. Herman, J. Pharm. Pharmacol. 67, 473 (2015). https://doi.org/10.1111/jphp.12334 N. S. Lam, X. Long, X. Su, and F. Lu, Biomed. Pharmacother. 130, 110624 (2020). https://doi.org/10.1016/j.biopha.2020.110624 R. Aboofazeli, N. Patel, M. Thomas, and M. J. Lawrence, Int. J. Pharm. 125, 107 (1995). S. Abbasi and M. Radi, Food Chem. 194, 972 (2016). A. Amiri-Rigi and S. Abbasi, Food Chem. 272, 568 (2019). https://doi.org/10.1016/j.foodchem.2015.08.078 M. Jalali-Jivan and S. Abbasi, Innov. Food Sci. Emerg. 272, 102505 (2020). https://doi.org/10.1016/j.ifset.2020.102505 C. Stubenrauch, B. Paeplow, and G. H. Findenegg, Langmuir 13, 3652 (1997). N. M. Murashova, A. S. Polyakova, and E. V. Yurtov, Colloid J. 83, 88—96 (2018). https://doi.org/10.1134/S1061933X18050101 N. M. Murashova, E. S. Trofimova, M. Yu. Kostyuchenko, et al., Nanotechnol. Russ. 14, 68–73 (2019). https://doi.org/10.1134/S1995078019010075 N. E. Sedyakina, A. F. Krivoshchepov, A. Ya. Zasypko, et al., Mendeleev Commun. 29, 320 (2019). https://doi.org/10.1016/j.mencom.2019.05.027 P. Szumala, C. Jungnickel, K. Kozlowska-Tylingo, et al., Int. J. Pharm. 572, 118738 (2019). https://doi.org/10.1016/j.ijpharm.2019.118738