Microelectrode characterization of the basolateral membrane of rabbit S3 proximal tubule
Tóm tắt
The purpose of this study was to characterize the basolateral membrane of the S3 segment of the rabbit proximal tubule using conventional and ion-selective microelectrodes. When compared with results from S1 and S2 segments, S3 cells under control conditions have a more negative basolateral membrane potential (V
bl=−69 mV), a higher relative potassium conductance (t
K=0.6), lower intracellular Na+ activity (A
Na=18.4mm), and higher intracellular K+ activity (A
K=67.8mm). No evidence for a conductive sodium-dependent or sodium-independent HCO
3
−
pathway could be demonstrated. The basolateral Na−K pump is inhibited by 10−4
m ouabain and bath perfusion with a potassium-free (0-K) solution. 0-K perfusion results inA
Na=64.8mm,A
K=18.5mm, andV
bl=−28 mV. Basolateral potassium channels are blocked by barium and by acidification of the bathing medium. The relative K+ conductance, as evaluated by increasing bath K+ to 17mm, is dependent upon the restingV
bl in both S2 and S3 cells. In summary, the basolateral membrane of S3 cells contains a pump-leak system with similar properties to S1 and S2 proximal tubule cells. The absence of conductive bicarbonate pathways results in a hyperpolarized cell and larger Na+ and K+ gradients across the cell borders, which will influence the transport properties and intracellular ion activities in this tubule segment.
Tài liệu tham khảo
Alpern, R.J. 1985. Mechanism of basolateral membrane H+/OH−/HCO −3 transport in the rat proximal convoluted tubule. A sodium-coupled electrogenic process.J. Gen. Physiol. 86:613–636
Bello-Reuss, E. 1982. Electrical properties of the basolateral membrane of the straight portion of the rabbit proximal renal tubule.J. Physiol. (London) 326:49–63
Berry, C.A. 1982. Heterogeneity of tubular transport processes in the nephron.Annu. Rev. Physiol. 44:181–201
Biagi, B.A. 1985. Effects of the anion transport inhibitor, SITS, on the proximal straight tubule of the rabbit perfused in vitro.J. Membrane Biol. 88:25–31
Biagi, B.A., Kubota, T., Sohtell, M., Giebisch, G. 1981. Intracellular potentials in rabbit proximal tubules perfused in vitro.Am. J. Physiol. 240:200–210
Biagi, B.A., Sohtell, M. 1986. Electrophysiology of basolateral bicarbonate transport in the rabbit proximal tubule.Am. J. Physiol. 250:F267-F272
Biagi, B.A., Sohtell, M. 1986. pH sensitivity of the basolateral membrane of the rabbit proximal tubule.Am. J. Physiol. 250:F261-F266
Biagi, B.A., Sohtell, M., Giebisch, G. 1981. Intracellular potassium activity in the rabbit proximal straight tubule.Am. J. Physiol. 241:F677-F686
Boron, W.F., Boulpaep, E.L. 1983. Intracellular pH regulation in the renal proximal tubule of the salamander: Basolateral HCO −3 transport.J. Gen. Physiol. 81:53–94
Brown, B.V., Biagi, B.A. 1986. Electrophysiological characterization of late proximal tubular segments (S3) from the rabbit perfused in vitro.Proc. Int. Un. Phys. Sci. 16:417 (Abstr.)
Cardinal, J., Lapointe, J.Y., Laprade, R. 1984. Luminal and peritubular ionic substitutions and intracellular potential of the rabbit proximal convoluted tubule.Am. J. Physiol. 247:F352-F364
Dobyan, D.C., Magill, L.S., Friedman, P.A., Hebert, S.C., Bulger, R.E. 1982. Carbonic anhydrase histochemistry in rabbit and mouse kidneys.Anat. Rec. 204:185–197
Gogelein, H., Greger, R. 1986. A voltage-dependent ionic channel in the basolateral membrane of late proximal tubules of the rabbit kidney.Pfluegers. Arch. 407:S142-S148
Grassl, S.M., Aronson, P.S. 1986. Na+/HCO −3 -co-transport in basolateral membrane vesicles isolated from rabbit renal cortex.J. Biol. Chem. 261:8778–8783
Kaissling, B., Kriz, W. 1979. Structural Analysis of the Rabbit Kidney, pp. 1–123. Springer-Verlag, New York
Koeppen, B.M., Giebisch, G. Biagi, B.A. 1983. Electrophysiology of mammalian renal tubules: Inferences from intracellular microelectrode studies.Annu. Rev. Physiol. 45:497–517
Kondo, Y., Fromter, E. 1987. Axial heterogeneity of sodium-bicarbonate cotransport in proximal straight tubule of rabbit kidney.Pfluegers Arch. 410:481–486
Kriz, W., Bankir, L. 1988. A standard nomenclature for structures of the kidney.Am. J. Physiol. 254:F1-F8
Kurtz, I. 1987. Apical Na+/H+ antiporter and glycolysis-dependent H+-ATPase regulate intracellular pH in the rabbit S3 proximal tubule.J. Clin. Invest. 80:928–935
Kurtz, I., Star, R., Balaban, R.S., Garvin, J.L., Knepper, M.A. 1986. Spontaneous luminal disequilibrium pH in S3 proximal tubules: Role in ammonia and bicarbonate transport.J. Clin. Invest. 78:989–996
Kuwahara, M., Rector, F.C., Jr., Berry, C.A. 1988. SITS-sensitive basolateral anion current in rabbit proximal convoluted tubules.Am. J. Physiol. 254:F828-F836
Lang, F., Oberleithner, H., Giebisch, G. 1986. Electrophysiological heterogeneity of proximal convoluted tubules inAmphiuma kidney.Am. J. Physiol. 251:F1063-F1072
Lapointe, J.Y., Laprade, R., Cardinal, J. 1984. Transepithelial and cell membrane electrical resistances of the rabbit proximal convoluted tubule.Am. J. Physiol. 247:F637-F649
Lapointe, J.Y., Laprade, R., Cardinal, J. 1986. Characterization of the apical membrane ionic permeability of the rabbit proximal convoluted tubule.Am. J. Physiol. 250:F339-F347
Lewis, S.A., Hanrahan, J.W., Van Driesche, W. 1984. Channels across epithelial cell layers.In: Current Topics in Membranes and Transport. Ion Channels: Molecular and Physiological Aspects. F. Bronner and W.D. Stein, editors. Vol. 23, pp. 253–293. Academic, New York
Maunsbach, A.B. 1973. Ultrastructure of the proximal tubule.In: Handbook of Physiology, Section 8: Renal Physiology. J. Orloff and R.W. Berliner, editors. pp. 31–81. Williams & Wilkins, Baltimore
Messner, G., Oberleithner, H., Lang, F. 1985. The effect of phenylalanine on the electrical properties of proximal tubule cells in the frog kidney.Pfluegers. Arch. 404:138–144
Messner, G., Wang, W., Paulmichl, M., Oberleithner, H., Lang, F. 1985. Ouabain decreases apparent potassium-conductance in proximal tubules of the amphibian kidney.Pfluegers. Arch. 404:131–137
Nakhoul, N.L., Boron, W.F. 1987. pH i regulation in the S3 proximal tubule: A novel HCO3-dependent acid-extruder at the basolateral membrane.Kidney Int. 31:412 (Abstr.)
Sasaki, S., Shiigai, T., Takeuchi, J. 1985. Intracellular pH in the isolated perfused rabbit proximal straight tubule.Am. J. Physiol. 249:F417-F423
Sasaki, S., Shiigai, T., Yoshiyama, N., Takeuchi, J. 1987. Mechanism of bicarbonate exit across basolateral membrane of rabbit proximal straight tubule.Am. J. Physiol. 252:F11-F18
Schafer, J.A., Barfuss, D.W. 1982. The study ofpars recta function by the perfusion of isolated tubule segments.Kidney Int. 22:434–448
Shanley, P.F., Brezis, M., Spokes, K., Silva, P., Epstein, F.H., Rosen, S. 1986. Transport-dependent cell injury in the S3 segment of the proximal tubule.Kidney Int. 29:1033–1037
Venkatachalam, M.A., Bernard, D.B., Donohoe, J.F., Levinsky, N.G. 1978. Ischemic damage and repair in the rat proximal tubule: Differences among the S1, S2, and S3 segments.Kidney Int. 41:31–49
Volkl, H., Geibel, J., Greger, R., Lang, F. 1986. Effects of ouabain and temperature on cell membrane potentials in isolated perfused straight proximal tubules of the mouse kidney.Pfluegers. Arch. 407:252–257
Warnock, D.G., Yee, V.J. 1982. Anion permeabilities of the isolated perfused rabbit proximal tubule.Am. J. Physiol. 242:395–405
Weinberg, J.M. 1985. Oxygen deprivation-induced injury to isolated rabbit kidney tubules.J. Clin. Invest. 76:1193–1208
Woodhall, P.B., Tisher, C.C., Simonton, C.A., Robinson, R.R. 1978. Relationship between para-aminohippurate secretion and cellular morphology in rabbit proximal tubules.J. Clin. Invest. 61:1320–1329