Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kalia, 2011
Abdul Khalil, 2012, Green composites from sustainable cellulose nanofibrils: a review, Carbohydr. Polym., 87, 963, 10.1016/j.carbpol.2011.08.078
Thakur, 2014, Processing and characterization of natural cellulose fibers/thermoset polymer composites, Carbohydr. Polym., 109, 102, 10.1016/j.carbpol.2014.03.039
Thakur, 2015
Miao, 2013, Cellulose reinforced polymer composites and nanocomposites: a critical review, Cellulose, 20, 2221, 10.1007/s10570-013-0007-3
Thakur, 2015
Ma, 2008, Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites, Carbohydr. Polym., 72, 369, 10.1016/j.carbpol.2007.09.002
Satyanarayana, 2009, Biodegradable composites based on lignocellulosic fibers—an overview, Prog. Polym. Sci., 34, 982, 10.1016/j.progpolymsci.2008.12.002
Fernandes, 2013, Bionanocomposites from lignocellulosic resources: properties, applications and future trends for their use in the biomedical field, Prog. Polym. Sci., 38, 1415, 10.1016/j.progpolymsci.2013.05.013
Pappu, 2015, Advances in industrial prospective of cellulosic macromolecules enriched banana biofibre resources: a review, Int. J. Biol. Macromol., 79, 449, 10.1016/j.ijbiomac.2015.05.013
Corobea, 2016, Novel nanocomposite membranes from cellulose acetate and clay-silica nanowires, Polymer. Adv. Technol., 10.1002/pat.3835
Voicu, 2016, Sericin covalent immobilization onto cellulose acetate membrane for biomedical applications, ACS Sustain. Chem. Eng., 4, 1765, 10.1021/acssuschemeng.5b01756
Thakur, 2013, Rapid synthesis of graft copolymers from natural cellulose fibers, Carbohydr. Polym., 98, 820, 10.1016/j.carbpol.2013.06.072
Brinchi, 2013, Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications, Carbohydr. Polym., 94, 154, 10.1016/j.carbpol.2013.01.033
Abdul Khalil, 2014, Production and modification of nanofibrillated cellulose using various mechanical processes: a review, Carbohydr. Polym., 99, 649, 10.1016/j.carbpol.2013.08.069
Thakur, 2016, Recent advances in cellulose and chitosan based membranes for water purification: a concise review, Carbohydr. Polym., 146, 148, 10.1016/j.carbpol.2016.03.030
Trache, 2016, Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability, J. Therm. Anal. Calorim., 124, 1485, 10.1007/s10973-016-5293-1
Berglund, 2005, Cellulose-based nanocomposites, 807
Boldizar, 1987, Prehydrolyzed cellulose as reinforcing filler for thermoplastics, Int. J. Polym. Mater., 11, 229, 10.1080/00914038708078665
Izzati Zulkifli, 2015, Mechanical properties and failure modes of recycled polypropylene/microcrystalline cellulose composites, Mater. Design, 69, 114, 10.1016/j.matdes.2014.12.053
Sun, 2014, Melt-processed poly(vinyl alcohol) composites filled with microcrystalline cellulose from waste cotton fabrics, Carbohydr. Polym., 101, 642, 10.1016/j.carbpol.2013.09.088
Hoyos, 2013, Effect of cellulose microcrystalline particles on properties of cement based composites, Mater. Design, 51, 810, 10.1016/j.matdes.2013.04.060
Haafiz, 2013, Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose, Carbohydr. Polym., 98, 139, 10.1016/j.carbpol.2013.05.069
Haafiz, 2013, Isolation and characterization of microcrystalline cellulose from oil palm biomass residue, Carbohydr. Polym., 93, 628, 10.1016/j.carbpol.2013.01.035
Xiao, 2014, Enhancing the thermal and mechanical properties of epoxy resins by addition of a hyperbranched aromatic polyamide grown on microcrystalline cellulose fibers, RSC Adv., 4, 14928, 10.1039/c3ra45732j
Dai, 2014, How does epoxidized soybean oil improve the toughness of microcrystalline cellulose filled polylactide acid composites?, Compos. Sci. Technol., 90, 9, 10.1016/j.compscitech.2013.10.009
Cataldi, 2014, Thermo-mechanical properties of innovative microcrystalline cellulose filled composites for art protection and restoration, J. Mater. Sci., 49, 2035, 10.1007/s10853-013-7892-6
Rafiee, 2015, Synthesis and characterization of polyurethane/microcrystalline cellulose bionanocomposites, Prog. Org. Coat., 86, 190, 10.1016/j.porgcoat.2015.05.013
Cataldi, 2015, Innovative microcrystalline cellulose composites as lining adhesives for canvas, Polym. Eng. Sci., 55, 1349, 10.1002/pen.24074
Cataldi, 2015, Poly 2-ethyl-2-oxazoline/microcrystalline cellulose composites for cultural heritage conservation: mechanical characterization in dry and wet state and application as lining adhesives of canvas, Int. J. Adhes. Adhes., 62, 92, 10.1016/j.ijadhadh.2015.07.002
Spoljaric, 2009, Polypropylene–microcrystalline cellulose composites with enhanced compatibility and properties, Compos. Part A Appl. Sci. Manuf., 40, 791, 10.1016/j.compositesa.2009.03.011
Ummartyotin, 2015, A critical review on cellulose: from fundamental to an approach on sensor technology, Renew. Sustain. Energy Rev., 41, 402, 10.1016/j.rser.2014.08.050
Lavoine, 2012, Microfibrillated cellulose–its barrier properties and applications in cellulosic materials: a review, Carbohydr. Polym., 90, 735, 10.1016/j.carbpol.2012.05.026
Klemm, 2011, Nanocelluloses A new family of nature-based materials, Angew. Chem. Int. Ed., 50, 5438, 10.1002/anie.201001273
Wertz, 2010
Siqueira, 2010, Cellulosic bionanocomposites: a review of preparation, properties and applications, Polymers, 2, 728, 10.3390/polym2040728
Habibi, 2010, Cellulose nanocrystals: chemistry, self-assembly, and applications, Chem. Rev., 110, 3479, 10.1021/cr900339w
Klemm, 2005, Cellulose: fascinating biopolymer and sustainable raw material, Angew. Chem. Int. Ed., 44, 3358, 10.1002/anie.200460587
Azizi Samir, 2005, Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field, Biomacromolecules, 6, 612, 10.1021/bm0493685
Hokkanen, 2016, A review on modification methods to cellulose-based adsorbents to improve adsorption capacity, Water Res., 91, 156, 10.1016/j.watres.2016.01.008
de Souza Lima, 2004, Rodlike cellulose microcrystals: structure, properties, and applications, Macromol. Rapid Comm., 25, 771, 10.1002/marc.200300268
Borges, 2015, Cellulose-based liquid crystalline composite systems, 215
O’Connell, 2008, Heavy metal adsorbents prepared from the modification of cellulose: a review, Bioresour. Technol., 99, 6709, 10.1016/j.biortech.2008.01.036
Zugenmaier, 2008
Leppänen, 2009, Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering, Cellulose, 16, 999, 10.1007/s10570-009-9298-9
Merci, 2015, Properties of microcrystalline cellulose extracted from soybean hulls by reactive extrusion, Food Res. Int., 73, 38, 10.1016/j.foodres.2015.03.020
Thoorens, 2014, Microcrystalline cellulose, a direct compression binder in a quality by design environment—a review, Int. J. Pharm., 473, 64, 10.1016/j.ijpharm.2014.06.055
Hussin, 2016, Physicochemical of microcrystalline cellulose from oil palm fronds as potential methylene blue adsorbents, Int. J. Biol. Macromol., 92, 11, 10.1016/j.ijbiomac.2016.06.094
Vijayalakshmi, 2016, Removal of copper(II) from aqueous solution using nanochitosan/sodium alginate/microcrystalline cellulose beads, Int. J. Biol. Macromol., 82, 440, 10.1016/j.ijbiomac.2015.09.070
Shcherbakova, 2012, Comparative study of powdered and microcrystalline cellulose samples of a various natural origins: physical and chemical characteristics, Russ. J. Bioorg. Chem., 38, 689, 10.1134/S1068162012070187
Das, 2010, Study of the properties of microcrystalline cellulose particles from different renewable resources by XRD, FTIR, nanoindentation, TGA and SEM, J. Polym. Environ., 18, 355, 10.1007/s10924-010-0167-2
Ohwoavworhua, 2004, Extraction and characterization of microcrystalline cellulose derived from Luffa cylindrica plant, Afr. J. Pharm. Res. Dev., 1, 1
Jain, 1983, Preparation of microcrystalline cellulose from cereal straw and its evaluation as a tablet excipient, Indian J. Pharm. Sci., 45, 83
Okhamafe, 1991, Celluloses extracted from groundnut shell and rice husk 1: preliminary physicochemical characterization, Pharm. World J., 8, 120
Okhamafe, 1995, Aspect of tablet disintegrant properties of cellulose derived from bagasse and maize cob, West Afr. J. Pharm., 9, 8
Ofoefule, 1999, Application of blends of MCC—Cissus gum in the formation of aqueous suspensions, Boll. Chim. Farm., 138, 217
M. Hanna, G. Biby, V. Miladinov, Production of microcrystalline cellulose by reactive extrusion, US Patent 6228213 (2001).
Ejikeme, 2008, Investigation of the physicochemical properties of microcrystalline cellulose from agricultural wastes I: orange mesocarp, Cellulose, 15, 141, 10.1007/s10570-007-9147-7
Jahan, 2011, Jute as raw material for the preparation of microcrystalline cellulose, Cellulose, 18, 451, 10.1007/s10570-010-9481-z
Adel, 2011, Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: physicochemical properties, Carbohydr. Polym., 83, 676, 10.1016/j.carbpol.2010.08.039
Virtanen, 2012, A physico-chemical characterisation of new raw materials for microcrystalline cellulose manufacturing, Cellulose, 19, 219, 10.1007/s10570-011-9636-6
Kalita, 2013, Extraction and characterization of microcrystalline cellulose from fodder grass; Setaria glauca (L) P. Beauv and its potential as a drug delivery vehicle for isoniazid, a first line antituberculosis drug, Colloids Surf. B Biointerfaces, 108, 85, 10.1016/j.colsurfb.2013.02.016
Okwonna, 2013, The effect of pulping concentration treatment on the properties of microcrystalline cellulose powder obtained from waste paper, Carbohydr. Polym., 98, 721, 10.1016/j.carbpol.2013.06.039
Ahmadi, 2015, Isolation of micro-and nano-crystalline cellulose particles and fabrication of crystalline particles-loaded whey protein cold-set gel, Food Chem., 174, 97, 10.1016/j.foodchem.2014.11.038
Chaiwutthinan, 2015, Biodegradable plastics prepared from poly(lactic acid), poly(butylene succinate) and microcrystalline cellulose extracted from waste-cotton fabric with a chain extender, J. Polym. Environ., 23, 114, 10.1007/s10924-014-0689-0
Trache, 2014, Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibres, Carbohydr. Polym., 104, 223, 10.1016/j.carbpol.2014.01.058
Keshk, 2011, A new method for producing microcrystalline cellulose from Gluconacetobacter xylinus and kenaf, Carbohydr. Polym., 84, 1301, 10.1016/j.carbpol.2011.01.024
de Oliveira, 2011, Synthesis and characterization of microcrystalline cellulose produced from bacterial cellulose, J. Therm. Anal. Calorim., 106, 703, 10.1007/s10973-011-1449-1
Pandey, 2015
Agbor, 2011, Biomass pretreatment: fundamentals toward application, Biotechnol. Adv., 29, 675, 10.1016/j.biotechadv.2011.05.005
Thoorens, 2015, Understanding the impact of microcrystalline cellulose physicochemical properties on tabletability, Int. J. Pharm., 490, 47, 10.1016/j.ijpharm.2015.05.026
Balaxi, 2009, Combined effects of wetting, drying, and microcrystalline cellulose type on the mechanical strength and disintegration of pellets, J. Pharm. Sci., 98, 676, 10.1002/jps.21454
Kiziltas, 2011, Dynamic mechanical behavior and thermal properties of microcrystalline cellulose (MCC)-filled nylon 6 composites, Thermochim. Acta, 519, 38, 10.1016/j.tca.2011.02.026
Ranby, 1949, Aqueous colloidal solutions of cellulose micelles, Acta. Chem. Scand., 3, 649, 10.3891/acta.chem.scand.03-0649
El-Sakhawy, 2007, Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues, Carbohydr. Polym., 67, 1, 10.1016/j.carbpol.2006.04.009
Håkansson, 2005, Acid hydrolysis of some industrial pulps: effect of hydrolysis conditions and raw material, Cellulose, 12, 177, 10.1007/s10570-004-1038-6
D. Schaible, B. Sherwood, Treatment of pulp to produce microcrystalline cellulose, US Patent 0131957 A1 (2004).
S. Trusovs, Microcrystalline cellulose, US Patent 6392034 B1 (2002).
X.T. Nguyen, Process for preparing microcrystalline cellulose, US Patent 7005514 B2 (2006).
Jacquet, 2012, Influence of steam explosion on physicochemical properties and hydrolysis rate of pure cellulose fibers, Bioresour. Technol., 121, 221, 10.1016/j.biortech.2012.06.073
E.Y. Ha, C.D. Landi, Method for producing microcrystalline cellulose, US Patent 5769934 (1998).
E.A. DeLong, Method of producing level off DP microcrystallinecellulose and glucose from lignocellulosic material, US Patent 4645541 (1987).
Lamsal, 2010, Extrusion as a thermo-mechanical pre-treatment for lignocellulosic ethanol, Biomass Bioenergy, 34, 1703, 10.1016/j.biombioe.2010.06.009
Stupińska, 2007, An environment-friendly method to prepare microcrystalline cellulose, Fibres Text. East. Eur., 5–6, 167
Rinaldi, 2009, Acid hydrolysis of cellulose as the entry point into biorefinery schemes, ChemSusChem, 2, 1096, 10.1002/cssc.200900188
Li, 2007, Efficient acid-catalyzed hydrolysis of cellulose in ionic liquid, Adv. Synth. Catal., 349, 1847, 10.1002/adsc.200700259
Mosier, 2002, Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation, Biotechnol. Bioeng., 79, 610, 10.1002/bit.10316
Saeman, 1945, Kinetics of wood saccharification-hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature, Ind. Eng. Chem., 37, 43, 10.1021/ie50421a009
Kačuráková, 2001, Developments in mid-infrared FT-IR spectroscopy of selected carbohydrates, Carbohydr. Polym., 44, 291, 10.1016/S0144-8617(00)00245-9
Sim, 2012, Computer-assisted analysis of fourier transform infrared (FTIR) spectra for characterization of various treated and untreated agriculture biomass, BioResources, 7, 5367, 10.15376/biores.7.4.5367-5380
Azubuike, 2012, Physicochemical, spectroscopic and thermal properties of microcrystalline cellulose derived from corn cobs, Int. J. Recycl. Org. Waste Agricult., 1, 1, 10.1186/2251-7715-1-9
Azubuike, 2012, Physicochemical, spectroscopic and thermal properties of powdered cellulose and microcrystalline cellulose derived from groundnut shells, J. Excip. Food Chem., 3, 106
Elanthikkal, 2010, Cellulose microfibres produced from banana plant wastes: isolation and characterization, Carbohydr. Polym., 80, 852, 10.1016/j.carbpol.2009.12.043
Haafiz, 2014, Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose, Carbohydr. Polym., 103, 119, 10.1016/j.carbpol.2013.11.055
El Ghali, 2012, Separation and characterization of new cellulosic fibres from Juncus acutus plant, BioResources, 7, 2002, 10.15376/biores.7.2.2002-2018
Adel, 2012, Hypolipidemic applications of microcrystalline cellulose composite synthesized from different agricultural residues, Int. J. Biol. Macromol., 51, 1091, 10.1016/j.ijbiomac.2012.08.003
Rosa, 2012, Chlorine-free extraction of cellulose from rice husk and whisker isolation, Carbohydr. Polym., 87, 1131, 10.1016/j.carbpol.2011.08.084
Karim, 2014, Statistical optimization for acid hydrolysis of microcrystalline cellulose and its physiochemical characterization by using metal ion catalyst, Materials, 7, 6982, 10.3390/ma7106982
Shi, 2012, Metabolites and chemical group changes in the wood-forming tissue of Pinus koraiensis under inclined conditions, BioResources, 7, 3463, 10.15376/biores.7.3.3463-3475
Zhou, 2009, The structure characterization of cellulose xanthogenate derived from the straw of Eichhornia crassipes, Bioresour. Technol., 100, 5366, 10.1016/j.biortech.2009.05.066
Luykx, 2008, A review of analytical methods for the identification and characterization of nano delivery systems in food, J. Agr. Food Chem., 56, 8231, 10.1021/jf8013926
Haw, 1984, Carbon-13 nuclear magnetic resonance spectrometric study of wood and wood pulping with cross polarization and magic-angle spinning, Anal. Chem., 56, 1323, 10.1021/ac00272a028
Foston, 2011, Cellulose isolation methodology for NMR analysis of cellulose ultrastructure, Materials, 4, 1985, 10.3390/ma4111985
Sannigrahi, 2008, Effects of two-stage dilute acid pretreatment on the structure and composition of lignin and cellulose in loblolly pine, Bioenergy Res., 1, 205, 10.1007/s12155-008-9021-y
Bhattacharya, 2008, Isolation, preparation and characterization of cellulose microfibers obtained from bagasse, Carbohydr. Polym., 73, 371, 10.1016/j.carbpol.2007.12.005
Engel, 2012, Derivatization-free gel permeation chromatography elucidates enzymatic cellulose hydrolysis, Biotechnol. Biofuels, 5, 1, 10.1186/1754-6834-5-77
Hubbell, 2010, Effect of acid-chlorite delignification on cellulose degree of polymerization, Bioresour. Technol., 101, 7410, 10.1016/j.biortech.2010.04.029
Trache, 2013, Thermal analysis of microcrystalline cellulose prepared from esparto grass, MATEC Web of Conferences, EDP Sciences, 10.1051/matecconf/20130301067
Petkov, 2008, Nanostructure by high-energy X-ray diffraction, Mater. Today, 11, 28, 10.1016/S1369-7021(08)70236-0
Segal, 1959, An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer, Text. Res. J., 29, 786, 10.1177/004051755902901003
Chandrahasa, 2014, Development of cellulose nanofibres from coconut husks, Int. J. Emerg. Technol. Adv. Eng., 4, 2250
He, 2007, Differences in morphological characteristics of bamboo fibres and other natural cellulose fibres: studies on X-ray diffraction, solid state 13C-CP/MAS NMR, and second derivative FTIR spectroscopy data, Iran. Polym. J., 16, 807
Wang, 2006, Effects of cellulose whiskers on properties of soy protein thermoplastics, Macromol. Biosci., 6, 524, 10.1002/mabi.200600034
Pracella, 2006, Functionalization, compatibilization and properties of polypropylene composites with hemp fibres, Compos. Sci. Technol., 66, 2218, 10.1016/j.compscitech.2005.12.006
Beg, 2015, Microcrystalline cellulose (MCC) from oil palm empty fruit bunch (EFB) fiber via simultaneous ultrasonic and alkali treatment, Int. J. Chem. Nucl. Mater. Metall. Eng., 9, 8
Trache, 2013, FTIR spectroscopy and X-ray powder diffraction characterization of microcrystalline cellulose obtained from alfa fibers, MATEC Web of Conferences, EDP Sciences, 10.1051/matecconf/20130301023
Kumar, 2013, Comparison of laboratory delignification methods, their selectivity, and impacts on physiochemical characteristics of cellulosic biomass, Bioresour. Technol., 130, 372, 10.1016/j.biortech.2012.12.028
Goldstein, 2012
Wang, 2000, Transmission electron microscopy of shape-controlled nanocrystals and their assemblies, J. Phys. Chem. B, 104, 1153, 10.1021/jp993593c
Hemsri, 2012, Wheat gluten composites reinforced with coconut fiber, Compos. Part A Appl. Sci. Manuf., 43, 1160, 10.1016/j.compositesa.2012.02.011
Klemm, 2006, 49
Ghanbarzadeh, 2015, Nanostructured materials utilized in biopolymer-based plastics for food packaging applications, Crit. Rev. Food Sci. Nutr., 55, 1699, 10.1080/10408398.2012.731023
Wang, 2008, Study on the chemical modification process of jute fiber, J. Eng. Fibers Fabr., 3, 1
Wang, 2015, Production of cellulose nanofibrils from bleached eucalyptus fibers by hyperthermostable endoglucanase treatment and subsequent microfluidization, Cellulose, 22, 351, 10.1007/s10570-014-0465-2
Xu, 2014, Comparison between cellulose nanocrystal and cellulose nanofibril reinforced poly(ethylene oxide) nanofibers and their novel shish-kebab-like crystalline structures, Macromolecules, 47, 3409, 10.1021/ma402627j
Yang, 2014, Surface treatment of cellulosic paper with starch-based composites reinforced with nanocrystalline cellulose, Ind. Eng. Chem. Res., 53, 13980, 10.1021/ie502125s
Yu, 2016, In situ development of self-reinforced cellulose nanocrystals based thermoplastic elastomers by atom transfer radical polymerization, Carbohydr. Polym., 141, 143, 10.1016/j.carbpol.2016.01.006
Yun, 2008, Effect of aligned cellulose film to the performance of electro-active paper actuator, Sens. Actuators A Phys., 141, 530, 10.1016/j.sna.2007.10.014
Wang, 2015, Transparent aqueous Mg (OH) 2 nanodispersion for transparent and flexible polymer film with enhanced flame-retardant property, Ind. Eng. Chem. Res., 54, 12805, 10.1021/acs.iecr.5b03172
Petersson, 2007, Structure and thermal properties of poly (lactic acid)/cellulose whiskers nanocomposite materials, Compos. Sci. Technol., 67, 2535, 10.1016/j.compscitech.2006.12.012
Panaitescu, 2007, Polymer composites with cellulose microfibrils, Polym. Eng. Sci., 47, 1228, 10.1002/pen.20803
Mathew, 2005, Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC), J. Appl. Polym. Sci., 97, 2014, 10.1002/app.21779
Arjmandi, 2016, Effect of hydrolysed cellulose nanowhiskers on properties of montmorillonite/polylactic acid nanocomposites, Int. J. Biol. Macromol., 82, 998, 10.1016/j.ijbiomac.2015.11.028
Davoudpour, 2015, Optimization of high pressure homogenization parameters for the isolation of cellulosic nanofibers using response surface methodology, Ind. Crop. Prod., 74, 381, 10.1016/j.indcrop.2015.05.029
Haafiz, 2015, Bionanocomposite based on cellulose nanowhisker from oil palm biomass-filled poly(lactic acid), Polym. Test., 48, 133, 10.1016/j.polymertesting.2015.10.003
Eichhorn, 2011, Cellulose nanowhiskers: promising materials for advanced applications, Soft Matter, 7, 303, 10.1039/C0SM00142B
Li, 2012, The effect of corn stalk microcrystalline cellulose on thermal and mechanical properties of chitosan composites, Appl. Mech. Mater. Trans. Tech. Publ., 1038, 10.4028/www.scientific.net/AMM.174-177.1038
El-Hadi, 2013, Influence of microcrystalline cellulose fiber (MCCF) on the morphology of poly(3-hydroxybutyrate)(PHB), Colloid Polym. Sci., 291, 743, 10.1007/s00396-012-2784-x
Philipp, 1979, Influence of cellulose physical structure on thermohydrolytic, hydrolytic, and enzymatic degradation of cellulose, Adv. Chem., 181, 127, 10.1021/ba-1979-0181.ch006
Nevell, 1976, The hydrolysis of cotton cellulose by hydrochloric acid in benzene, Carbohydr. Res., 49, 163, 10.1016/S0008-6215(00)83134-1
Averous, 2006, Properties of biocomposites based on lignocellulosic fillers, Carbohydr. Polym., 66, 480, 10.1016/j.carbpol.2006.04.004
Alvarez, 2006, Thermal degradation and decomposition of jute/vinylester composites, J. Therm. Anal. Calorim., 85, 383, 10.1007/s10973-005-7102-0
Bochek, 2003, Fabrication of microcrystalline and powdered cellulose from short flax fiber and flax straw, Russ. J. Appl. Chem., 76, 1679, 10.1023/B:RJAC.0000015737.07117.12
Ghaffar, 2014, Lignin in straw and its applications as an adhesive, Int. J. Adhes. Adhes., 48, 92, 10.1016/j.ijadhadh.2013.09.001
Abdul Khalil, 2007, Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers, BioResources, 1, 220, 10.15376/biores.1.2.220-232
Goda, 2006, Improvement of plant based natural fibers for toughening green composites—effect of load application during mercerization of ramie fibers, Compos. Part A Appl. Sci. Manuf., 37, 2213, 10.1016/j.compositesa.2005.12.014
Rosa, 2009, Biodegradable composites based on starch/EVOH/glycerol blends and coconut fibers, J. Appl. Polym. Sci., 111, 612, 10.1002/app.29062
Joseph, 2003, The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites, Compos. Part A Appl. Sci. Manuf., 34, 253, 10.1016/S1359-835X(02)00185-9
Caraschi, 2000, Characterization of curaua fiber, Mol. Cryst. Liq. Cryst., 353, 149, 10.1080/10587250008025655
Terinte, 2011, Overview on native cellulose and microcrystalline cellulose I structure studied by X-ray diffraction (WAXD): comparison between measurement techniques, Lenzinger Berichte, 89, 118