Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review

International Journal of Biological Macromolecules - Tập 93 - Trang 789-804 - 2016
Djalal Trache1, M. Hazwan Hussin2, Caryn Tan Hui Chuin2, S. Sabar3, M. R. Nurul Fazita4, Owolabi Folahan Abdulwahab Taiwo5,4, Tahir Hassan4, Mohamad Haafiz Mohamad Kassim4
1UER Chimie Appliquée, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, Algiers, Algeria
2Lignocellulosic Research Group, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
3School of Distance Education, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
4School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
5Federal Institute of Industrial Research, Oshodi, Nigeria

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kalia, 2011

Abdul Khalil, 2012, Green composites from sustainable cellulose nanofibrils: a review, Carbohydr. Polym., 87, 963, 10.1016/j.carbpol.2011.08.078

Thakur, 2014, Processing and characterization of natural cellulose fibers/thermoset polymer composites, Carbohydr. Polym., 109, 102, 10.1016/j.carbpol.2014.03.039

Thakur, 2015

Miao, 2013, Cellulose reinforced polymer composites and nanocomposites: a critical review, Cellulose, 20, 2221, 10.1007/s10570-013-0007-3

Thakur, 2015

Ma, 2008, Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites, Carbohydr. Polym., 72, 369, 10.1016/j.carbpol.2007.09.002

Satyanarayana, 2009, Biodegradable composites based on lignocellulosic fibers—an overview, Prog. Polym. Sci., 34, 982, 10.1016/j.progpolymsci.2008.12.002

Fernandes, 2013, Bionanocomposites from lignocellulosic resources: properties, applications and future trends for their use in the biomedical field, Prog. Polym. Sci., 38, 1415, 10.1016/j.progpolymsci.2013.05.013

Pappu, 2015, Advances in industrial prospective of cellulosic macromolecules enriched banana biofibre resources: a review, Int. J. Biol. Macromol., 79, 449, 10.1016/j.ijbiomac.2015.05.013

Corobea, 2016, Novel nanocomposite membranes from cellulose acetate and clay-silica nanowires, Polymer. Adv. Technol., 10.1002/pat.3835

Voicu, 2016, Sericin covalent immobilization onto cellulose acetate membrane for biomedical applications, ACS Sustain. Chem. Eng., 4, 1765, 10.1021/acssuschemeng.5b01756

Thakur, 2013, Rapid synthesis of graft copolymers from natural cellulose fibers, Carbohydr. Polym., 98, 820, 10.1016/j.carbpol.2013.06.072

Brinchi, 2013, Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications, Carbohydr. Polym., 94, 154, 10.1016/j.carbpol.2013.01.033

Abdul Khalil, 2014, Production and modification of nanofibrillated cellulose using various mechanical processes: a review, Carbohydr. Polym., 99, 649, 10.1016/j.carbpol.2013.08.069

Thakur, 2016, Recent advances in cellulose and chitosan based membranes for water purification: a concise review, Carbohydr. Polym., 146, 148, 10.1016/j.carbpol.2016.03.030

Trache, 2016, Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability, J. Therm. Anal. Calorim., 124, 1485, 10.1007/s10973-016-5293-1

Berglund, 2005, Cellulose-based nanocomposites, 807

Boldizar, 1987, Prehydrolyzed cellulose as reinforcing filler for thermoplastics, Int. J. Polym. Mater., 11, 229, 10.1080/00914038708078665

Izzati Zulkifli, 2015, Mechanical properties and failure modes of recycled polypropylene/microcrystalline cellulose composites, Mater. Design, 69, 114, 10.1016/j.matdes.2014.12.053

Sun, 2014, Melt-processed poly(vinyl alcohol) composites filled with microcrystalline cellulose from waste cotton fabrics, Carbohydr. Polym., 101, 642, 10.1016/j.carbpol.2013.09.088

Hoyos, 2013, Effect of cellulose microcrystalline particles on properties of cement based composites, Mater. Design, 51, 810, 10.1016/j.matdes.2013.04.060

Haafiz, 2013, Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose, Carbohydr. Polym., 98, 139, 10.1016/j.carbpol.2013.05.069

Haafiz, 2013, Isolation and characterization of microcrystalline cellulose from oil palm biomass residue, Carbohydr. Polym., 93, 628, 10.1016/j.carbpol.2013.01.035

Xiao, 2014, Enhancing the thermal and mechanical properties of epoxy resins by addition of a hyperbranched aromatic polyamide grown on microcrystalline cellulose fibers, RSC Adv., 4, 14928, 10.1039/c3ra45732j

Dai, 2014, How does epoxidized soybean oil improve the toughness of microcrystalline cellulose filled polylactide acid composites?, Compos. Sci. Technol., 90, 9, 10.1016/j.compscitech.2013.10.009

Cataldi, 2014, Thermo-mechanical properties of innovative microcrystalline cellulose filled composites for art protection and restoration, J. Mater. Sci., 49, 2035, 10.1007/s10853-013-7892-6

Rafiee, 2015, Synthesis and characterization of polyurethane/microcrystalline cellulose bionanocomposites, Prog. Org. Coat., 86, 190, 10.1016/j.porgcoat.2015.05.013

Cataldi, 2015, Innovative microcrystalline cellulose composites as lining adhesives for canvas, Polym. Eng. Sci., 55, 1349, 10.1002/pen.24074

Cataldi, 2015, Poly 2-ethyl-2-oxazoline/microcrystalline cellulose composites for cultural heritage conservation: mechanical characterization in dry and wet state and application as lining adhesives of canvas, Int. J. Adhes. Adhes., 62, 92, 10.1016/j.ijadhadh.2015.07.002

Spoljaric, 2009, Polypropylene–microcrystalline cellulose composites with enhanced compatibility and properties, Compos. Part A Appl. Sci. Manuf., 40, 791, 10.1016/j.compositesa.2009.03.011

Ummartyotin, 2015, A critical review on cellulose: from fundamental to an approach on sensor technology, Renew. Sustain. Energy Rev., 41, 402, 10.1016/j.rser.2014.08.050

Lavoine, 2012, Microfibrillated cellulose–its barrier properties and applications in cellulosic materials: a review, Carbohydr. Polym., 90, 735, 10.1016/j.carbpol.2012.05.026

Klemm, 2011, Nanocelluloses A new family of nature-based materials, Angew. Chem. Int. Ed., 50, 5438, 10.1002/anie.201001273

Wertz, 2010

Siqueira, 2010, Cellulosic bionanocomposites: a review of preparation, properties and applications, Polymers, 2, 728, 10.3390/polym2040728

Habibi, 2010, Cellulose nanocrystals: chemistry, self-assembly, and applications, Chem. Rev., 110, 3479, 10.1021/cr900339w

Klemm, 2005, Cellulose: fascinating biopolymer and sustainable raw material, Angew. Chem. Int. Ed., 44, 3358, 10.1002/anie.200460587

Azizi Samir, 2005, Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field, Biomacromolecules, 6, 612, 10.1021/bm0493685

Hokkanen, 2016, A review on modification methods to cellulose-based adsorbents to improve adsorption capacity, Water Res., 91, 156, 10.1016/j.watres.2016.01.008

de Souza Lima, 2004, Rodlike cellulose microcrystals: structure, properties, and applications, Macromol. Rapid Comm., 25, 771, 10.1002/marc.200300268

Borges, 2015, Cellulose-based liquid crystalline composite systems, 215

O’Connell, 2008, Heavy metal adsorbents prepared from the modification of cellulose: a review, Bioresour. Technol., 99, 6709, 10.1016/j.biortech.2008.01.036

Zugenmaier, 2008

Leppänen, 2009, Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering, Cellulose, 16, 999, 10.1007/s10570-009-9298-9

Battista, 1962, Microcrystalline cellulose, Ind. Eng. Chem., 54, 20, 10.1021/ie50633a003

Merci, 2015, Properties of microcrystalline cellulose extracted from soybean hulls by reactive extrusion, Food Res. Int., 73, 38, 10.1016/j.foodres.2015.03.020

Thoorens, 2014, Microcrystalline cellulose, a direct compression binder in a quality by design environment—a review, Int. J. Pharm., 473, 64, 10.1016/j.ijpharm.2014.06.055

Hussin, 2016, Physicochemical of microcrystalline cellulose from oil palm fronds as potential methylene blue adsorbents, Int. J. Biol. Macromol., 92, 11, 10.1016/j.ijbiomac.2016.06.094

Vijayalakshmi, 2016, Removal of copper(II) from aqueous solution using nanochitosan/sodium alginate/microcrystalline cellulose beads, Int. J. Biol. Macromol., 82, 440, 10.1016/j.ijbiomac.2015.09.070

Shcherbakova, 2012, Comparative study of powdered and microcrystalline cellulose samples of a various natural origins: physical and chemical characteristics, Russ. J. Bioorg. Chem., 38, 689, 10.1134/S1068162012070187

Das, 2010, Study of the properties of microcrystalline cellulose particles from different renewable resources by XRD, FTIR, nanoindentation, TGA and SEM, J. Polym. Environ., 18, 355, 10.1007/s10924-010-0167-2

Ohwoavworhua, 2004, Extraction and characterization of microcrystalline cellulose derived from Luffa cylindrica plant, Afr. J. Pharm. Res. Dev., 1, 1

Jain, 1983, Preparation of microcrystalline cellulose from cereal straw and its evaluation as a tablet excipient, Indian J. Pharm. Sci., 45, 83

Okhamafe, 1991, Celluloses extracted from groundnut shell and rice husk 1: preliminary physicochemical characterization, Pharm. World J., 8, 120

Okhamafe, 1995, Aspect of tablet disintegrant properties of cellulose derived from bagasse and maize cob, West Afr. J. Pharm., 9, 8

Ofoefule, 1999, Application of blends of MCC—Cissus gum in the formation of aqueous suspensions, Boll. Chim. Farm., 138, 217

M. Hanna, G. Biby, V. Miladinov, Production of microcrystalline cellulose by reactive extrusion, US Patent 6228213 (2001).

Ejikeme, 2008, Investigation of the physicochemical properties of microcrystalline cellulose from agricultural wastes I: orange mesocarp, Cellulose, 15, 141, 10.1007/s10570-007-9147-7

Jahan, 2011, Jute as raw material for the preparation of microcrystalline cellulose, Cellulose, 18, 451, 10.1007/s10570-010-9481-z

Adel, 2011, Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: physicochemical properties, Carbohydr. Polym., 83, 676, 10.1016/j.carbpol.2010.08.039

Virtanen, 2012, A physico-chemical characterisation of new raw materials for microcrystalline cellulose manufacturing, Cellulose, 19, 219, 10.1007/s10570-011-9636-6

Kalita, 2013, Extraction and characterization of microcrystalline cellulose from fodder grass; Setaria glauca (L) P. Beauv and its potential as a drug delivery vehicle for isoniazid, a first line antituberculosis drug, Colloids Surf. B Biointerfaces, 108, 85, 10.1016/j.colsurfb.2013.02.016

Okwonna, 2013, The effect of pulping concentration treatment on the properties of microcrystalline cellulose powder obtained from waste paper, Carbohydr. Polym., 98, 721, 10.1016/j.carbpol.2013.06.039

Ahmadi, 2015, Isolation of micro-and nano-crystalline cellulose particles and fabrication of crystalline particles-loaded whey protein cold-set gel, Food Chem., 174, 97, 10.1016/j.foodchem.2014.11.038

Chaiwutthinan, 2015, Biodegradable plastics prepared from poly(lactic acid), poly(butylene succinate) and microcrystalline cellulose extracted from waste-cotton fabric with a chain extender, J. Polym. Environ., 23, 114, 10.1007/s10924-014-0689-0

Trache, 2014, Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibres, Carbohydr. Polym., 104, 223, 10.1016/j.carbpol.2014.01.058

Keshk, 2011, A new method for producing microcrystalline cellulose from Gluconacetobacter xylinus and kenaf, Carbohydr. Polym., 84, 1301, 10.1016/j.carbpol.2011.01.024

de Oliveira, 2011, Synthesis and characterization of microcrystalline cellulose produced from bacterial cellulose, J. Therm. Anal. Calorim., 106, 703, 10.1007/s10973-011-1449-1

Pandey, 2015

Agbor, 2011, Biomass pretreatment: fundamentals toward application, Biotechnol. Adv., 29, 675, 10.1016/j.biotechadv.2011.05.005

Thoorens, 2015, Understanding the impact of microcrystalline cellulose physicochemical properties on tabletability, Int. J. Pharm., 490, 47, 10.1016/j.ijpharm.2015.05.026

Balaxi, 2009, Combined effects of wetting, drying, and microcrystalline cellulose type on the mechanical strength and disintegration of pellets, J. Pharm. Sci., 98, 676, 10.1002/jps.21454

Kiziltas, 2011, Dynamic mechanical behavior and thermal properties of microcrystalline cellulose (MCC)-filled nylon 6 composites, Thermochim. Acta, 519, 38, 10.1016/j.tca.2011.02.026

Ranby, 1949, Aqueous colloidal solutions of cellulose micelles, Acta. Chem. Scand., 3, 649, 10.3891/acta.chem.scand.03-0649

El-Sakhawy, 2007, Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues, Carbohydr. Polym., 67, 1, 10.1016/j.carbpol.2006.04.009

Håkansson, 2005, Acid hydrolysis of some industrial pulps: effect of hydrolysis conditions and raw material, Cellulose, 12, 177, 10.1007/s10570-004-1038-6

D. Schaible, B. Sherwood, Treatment of pulp to produce microcrystalline cellulose, US Patent 0131957 A1 (2004).

S. Trusovs, Microcrystalline cellulose, US Patent 6392034 B1 (2002).

X.T. Nguyen, Process for preparing microcrystalline cellulose, US Patent 7005514 B2 (2006).

Jacquet, 2012, Influence of steam explosion on physicochemical properties and hydrolysis rate of pure cellulose fibers, Bioresour. Technol., 121, 221, 10.1016/j.biortech.2012.06.073

E.Y. Ha, C.D. Landi, Method for producing microcrystalline cellulose, US Patent 5769934 (1998).

E.A. DeLong, Method of producing level off DP microcrystallinecellulose and glucose from lignocellulosic material, US Patent 4645541 (1987).

Lamsal, 2010, Extrusion as a thermo-mechanical pre-treatment for lignocellulosic ethanol, Biomass Bioenergy, 34, 1703, 10.1016/j.biombioe.2010.06.009

Stupińska, 2007, An environment-friendly method to prepare microcrystalline cellulose, Fibres Text. East. Eur., 5–6, 167

Rinaldi, 2009, Acid hydrolysis of cellulose as the entry point into biorefinery schemes, ChemSusChem, 2, 1096, 10.1002/cssc.200900188

Li, 2007, Efficient acid-catalyzed hydrolysis of cellulose in ionic liquid, Adv. Synth. Catal., 349, 1847, 10.1002/adsc.200700259

Mosier, 2002, Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation, Biotechnol. Bioeng., 79, 610, 10.1002/bit.10316

Frost, 1961, Kinetics and mechanism, J. Phys. Chem., 65, 384, 10.1021/j100820a601

Saeman, 1945, Kinetics of wood saccharification-hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature, Ind. Eng. Chem., 37, 43, 10.1021/ie50421a009

Kačuráková, 2001, Developments in mid-infrared FT-IR spectroscopy of selected carbohydrates, Carbohydr. Polym., 44, 291, 10.1016/S0144-8617(00)00245-9

Sim, 2012, Computer-assisted analysis of fourier transform infrared (FTIR) spectra for characterization of various treated and untreated agriculture biomass, BioResources, 7, 5367, 10.15376/biores.7.4.5367-5380

Azubuike, 2012, Physicochemical, spectroscopic and thermal properties of microcrystalline cellulose derived from corn cobs, Int. J. Recycl. Org. Waste Agricult., 1, 1, 10.1186/2251-7715-1-9

Azubuike, 2012, Physicochemical, spectroscopic and thermal properties of powdered cellulose and microcrystalline cellulose derived from groundnut shells, J. Excip. Food Chem., 3, 106

Elanthikkal, 2010, Cellulose microfibres produced from banana plant wastes: isolation and characterization, Carbohydr. Polym., 80, 852, 10.1016/j.carbpol.2009.12.043

Haafiz, 2014, Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose, Carbohydr. Polym., 103, 119, 10.1016/j.carbpol.2013.11.055

El Ghali, 2012, Separation and characterization of new cellulosic fibres from Juncus acutus plant, BioResources, 7, 2002, 10.15376/biores.7.2.2002-2018

Adel, 2012, Hypolipidemic applications of microcrystalline cellulose composite synthesized from different agricultural residues, Int. J. Biol. Macromol., 51, 1091, 10.1016/j.ijbiomac.2012.08.003

Rosa, 2012, Chlorine-free extraction of cellulose from rice husk and whisker isolation, Carbohydr. Polym., 87, 1131, 10.1016/j.carbpol.2011.08.084

Karim, 2014, Statistical optimization for acid hydrolysis of microcrystalline cellulose and its physiochemical characterization by using metal ion catalyst, Materials, 7, 6982, 10.3390/ma7106982

Shi, 2012, Metabolites and chemical group changes in the wood-forming tissue of Pinus koraiensis under inclined conditions, BioResources, 7, 3463, 10.15376/biores.7.3.3463-3475

Zhou, 2009, The structure characterization of cellulose xanthogenate derived from the straw of Eichhornia crassipes, Bioresour. Technol., 100, 5366, 10.1016/j.biortech.2009.05.066

Luykx, 2008, A review of analytical methods for the identification and characterization of nano delivery systems in food, J. Agr. Food Chem., 56, 8231, 10.1021/jf8013926

Haw, 1984, Carbon-13 nuclear magnetic resonance spectrometric study of wood and wood pulping with cross polarization and magic-angle spinning, Anal. Chem., 56, 1323, 10.1021/ac00272a028

Foston, 2011, Cellulose isolation methodology for NMR analysis of cellulose ultrastructure, Materials, 4, 1985, 10.3390/ma4111985

Sannigrahi, 2008, Effects of two-stage dilute acid pretreatment on the structure and composition of lignin and cellulose in loblolly pine, Bioenergy Res., 1, 205, 10.1007/s12155-008-9021-y

Bhattacharya, 2008, Isolation, preparation and characterization of cellulose microfibers obtained from bagasse, Carbohydr. Polym., 73, 371, 10.1016/j.carbpol.2007.12.005

Engel, 2012, Derivatization-free gel permeation chromatography elucidates enzymatic cellulose hydrolysis, Biotechnol. Biofuels, 5, 1, 10.1186/1754-6834-5-77

Hubbell, 2010, Effect of acid-chlorite delignification on cellulose degree of polymerization, Bioresour. Technol., 101, 7410, 10.1016/j.biortech.2010.04.029

Trache, 2013, Thermal analysis of microcrystalline cellulose prepared from esparto grass, MATEC Web of Conferences, EDP Sciences, 10.1051/matecconf/20130301067

Petkov, 2008, Nanostructure by high-energy X-ray diffraction, Mater. Today, 11, 28, 10.1016/S1369-7021(08)70236-0

Segal, 1959, An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer, Text. Res. J., 29, 786, 10.1177/004051755902901003

Chandrahasa, 2014, Development of cellulose nanofibres from coconut husks, Int. J. Emerg. Technol. Adv. Eng., 4, 2250

He, 2007, Differences in morphological characteristics of bamboo fibres and other natural cellulose fibres: studies on X-ray diffraction, solid state 13C-CP/MAS NMR, and second derivative FTIR spectroscopy data, Iran. Polym. J., 16, 807

Wang, 2006, Effects of cellulose whiskers on properties of soy protein thermoplastics, Macromol. Biosci., 6, 524, 10.1002/mabi.200600034

Pracella, 2006, Functionalization, compatibilization and properties of polypropylene composites with hemp fibres, Compos. Sci. Technol., 66, 2218, 10.1016/j.compscitech.2005.12.006

Beg, 2015, Microcrystalline cellulose (MCC) from oil palm empty fruit bunch (EFB) fiber via simultaneous ultrasonic and alkali treatment, Int. J. Chem. Nucl. Mater. Metall. Eng., 9, 8

Trache, 2013, FTIR spectroscopy and X-ray powder diffraction characterization of microcrystalline cellulose obtained from alfa fibers, MATEC Web of Conferences, EDP Sciences, 10.1051/matecconf/20130301023

Kumar, 2013, Comparison of laboratory delignification methods, their selectivity, and impacts on physiochemical characteristics of cellulosic biomass, Bioresour. Technol., 130, 372, 10.1016/j.biortech.2012.12.028

Goldstein, 2012

Wang, 2000, Transmission electron microscopy of shape-controlled nanocrystals and their assemblies, J. Phys. Chem. B, 104, 1153, 10.1021/jp993593c

Hemsri, 2012, Wheat gluten composites reinforced with coconut fiber, Compos. Part A Appl. Sci. Manuf., 43, 1160, 10.1016/j.compositesa.2012.02.011

Klemm, 2006, 49

Ghanbarzadeh, 2015, Nanostructured materials utilized in biopolymer-based plastics for food packaging applications, Crit. Rev. Food Sci. Nutr., 55, 1699, 10.1080/10408398.2012.731023

Wang, 2008, Study on the chemical modification process of jute fiber, J. Eng. Fibers Fabr., 3, 1

Wang, 2015, Production of cellulose nanofibrils from bleached eucalyptus fibers by hyperthermostable endoglucanase treatment and subsequent microfluidization, Cellulose, 22, 351, 10.1007/s10570-014-0465-2

Xu, 2014, Comparison between cellulose nanocrystal and cellulose nanofibril reinforced poly(ethylene oxide) nanofibers and their novel shish-kebab-like crystalline structures, Macromolecules, 47, 3409, 10.1021/ma402627j

Yang, 2014, Surface treatment of cellulosic paper with starch-based composites reinforced with nanocrystalline cellulose, Ind. Eng. Chem. Res., 53, 13980, 10.1021/ie502125s

Yu, 2016, In situ development of self-reinforced cellulose nanocrystals based thermoplastic elastomers by atom transfer radical polymerization, Carbohydr. Polym., 141, 143, 10.1016/j.carbpol.2016.01.006

Yun, 2008, Effect of aligned cellulose film to the performance of electro-active paper actuator, Sens. Actuators A Phys., 141, 530, 10.1016/j.sna.2007.10.014

Wang, 2015, Transparent aqueous Mg (OH) 2 nanodispersion for transparent and flexible polymer film with enhanced flame-retardant property, Ind. Eng. Chem. Res., 54, 12805, 10.1021/acs.iecr.5b03172

Petersson, 2007, Structure and thermal properties of poly (lactic acid)/cellulose whiskers nanocomposite materials, Compos. Sci. Technol., 67, 2535, 10.1016/j.compscitech.2006.12.012

Panaitescu, 2007, Polymer composites with cellulose microfibrils, Polym. Eng. Sci., 47, 1228, 10.1002/pen.20803

Mathew, 2005, Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC), J. Appl. Polym. Sci., 97, 2014, 10.1002/app.21779

Arjmandi, 2016, Effect of hydrolysed cellulose nanowhiskers on properties of montmorillonite/polylactic acid nanocomposites, Int. J. Biol. Macromol., 82, 998, 10.1016/j.ijbiomac.2015.11.028

Davoudpour, 2015, Optimization of high pressure homogenization parameters for the isolation of cellulosic nanofibers using response surface methodology, Ind. Crop. Prod., 74, 381, 10.1016/j.indcrop.2015.05.029

Haafiz, 2015, Bionanocomposite based on cellulose nanowhisker from oil palm biomass-filled poly(lactic acid), Polym. Test., 48, 133, 10.1016/j.polymertesting.2015.10.003

Eichhorn, 2011, Cellulose nanowhiskers: promising materials for advanced applications, Soft Matter, 7, 303, 10.1039/C0SM00142B

Li, 2012, The effect of corn stalk microcrystalline cellulose on thermal and mechanical properties of chitosan composites, Appl. Mech. Mater. Trans. Tech. Publ., 1038, 10.4028/www.scientific.net/AMM.174-177.1038

El-Hadi, 2013, Influence of microcrystalline cellulose fiber (MCCF) on the morphology of poly(3-hydroxybutyrate)(PHB), Colloid Polym. Sci., 291, 743, 10.1007/s00396-012-2784-x

Philipp, 1979, Influence of cellulose physical structure on thermohydrolytic, hydrolytic, and enzymatic degradation of cellulose, Adv. Chem., 181, 127, 10.1021/ba-1979-0181.ch006

Nevell, 1976, The hydrolysis of cotton cellulose by hydrochloric acid in benzene, Carbohydr. Res., 49, 163, 10.1016/S0008-6215(00)83134-1

Averous, 2006, Properties of biocomposites based on lignocellulosic fillers, Carbohydr. Polym., 66, 480, 10.1016/j.carbpol.2006.04.004

Alvarez, 2006, Thermal degradation and decomposition of jute/vinylester composites, J. Therm. Anal. Calorim., 85, 383, 10.1007/s10973-005-7102-0

Bochek, 2003, Fabrication of microcrystalline and powdered cellulose from short flax fiber and flax straw, Russ. J. Appl. Chem., 76, 1679, 10.1023/B:RJAC.0000015737.07117.12

Ghaffar, 2014, Lignin in straw and its applications as an adhesive, Int. J. Adhes. Adhes., 48, 92, 10.1016/j.ijadhadh.2013.09.001

Abdul Khalil, 2007, Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers, BioResources, 1, 220, 10.15376/biores.1.2.220-232

Goda, 2006, Improvement of plant based natural fibers for toughening green composites—effect of load application during mercerization of ramie fibers, Compos. Part A Appl. Sci. Manuf., 37, 2213, 10.1016/j.compositesa.2005.12.014

Rosa, 2009, Biodegradable composites based on starch/EVOH/glycerol blends and coconut fibers, J. Appl. Polym. Sci., 111, 612, 10.1002/app.29062

Joseph, 2003, The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites, Compos. Part A Appl. Sci. Manuf., 34, 253, 10.1016/S1359-835X(02)00185-9

Caraschi, 2000, Characterization of curaua fiber, Mol. Cryst. Liq. Cryst., 353, 149, 10.1080/10587250008025655

Terinte, 2011, Overview on native cellulose and microcrystalline cellulose I structure studied by X-ray diffraction (WAXD): comparison between measurement techniques, Lenzinger Berichte, 89, 118