Microbiota and Nutrient Portraits of European Roe Deer (Capreolus capreolus) Rumen Contents in Characteristic Southern German Habitats

Sarah-Alica Dahl1, Jana Seifert2,3, Amélia Camarinha‐Silva3,2, Yu-Chieh Cheng3,2, Angélica Hernández-Arriaga3,2, Martina Hudler4, W. Windisch5, Andreas König1
1Wildlife Biology and Management Unit, Chair of Animal Nutrition and Metabolism, Technical University of Munich, Freising, Germany
2Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
3HoLMiR – Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
4Game Management and Wildlife Management, Weihenstephan-Triesdorf University of Applied Sciences, Freising, Germany
5TUM School of Life Sciences, Technical University of Munich, Freising, Germany

Tóm tắt

Abstract Roe deer (Capreolus capreolus) are found in various habitats, from pure forest cultures to agricultural areas and mountains. In adapting to the geographically and seasonally differentiating food supply, they depend, above all, on an adapted microbiome. However, knowledge about the microbiome of wild ruminants still needs to be improved. There are only a few publications for individual species with a low number of samples. This study aims to identify a core microbiota for Bavarian roe deer and present nutrient and microbiota portraits of the individual habitat types. This study investigated the roe deer’s rumen (reticulorumen) content from seven different characteristic Bavarian habitat types. The focus was on the composition of nutrients, fermentation products, and the rumen bacterial community. A total of 311 roe deer samples were analysed, with the most even possible distribution per habitat, season, age class, and gender. Significant differences in nutrient concentrations and microbial composition were identified for the factors habitat, season, and age class. The highest crude protein content (plant protein and microbial) in the rumen was determined in the purely agricultural habitat (AG), the highest value of non-fibre carbohydrates in the alpine mountain forest, and the highest fibre content (neutral detergent fibre, NDF) in the pine forest habitat. Maximum values for fibre content go up to 70% NDF. The proportion of metabolites (ammonia, lactate, total volatile fatty acids) was highest in the Agriculture-Beech-Forest habitat (ABF). Correlations can be identified between adaptations in the microbiota and specific nutrient concentrations, as well as in strong fluctuations in ingested forage. In addition, a core bacterial community comprising five genera could be identified across all habitats, up to 44% of total relative abundance. As with all wild ruminants, many microbial genera remain largely unclassified at various taxonomic levels. This study provides a more in-depth insight into the diversity and complexity of the roe deer rumen microbiota. It highlights the key microorganisms responsible for converting naturally available nutrients of different botanical origins.

Từ khóa


Tài liệu tham khảo

Cederlund G (1983) Home range dynamics and habitat selection by roe deer in a boreal area in central Sweden. Acta Theriol 28(20):443–460

Wölfel H (2005) Biologie des Rehwildes und Konsequenzen für die jagdliche Praxis. oder: Das Reh ist kein Ungeziefer und der Jäger kein Schädlingsbekämpfer. Österreichische Jäger Tagung. Raumberg-Gumpenstein

Dahl S-A, Hudler M, Windisch W, Bolduan C, Brugger D, König A (2020) High fibre selection by roe deer (Capreolus capreolus): evidence of ruminal microbiome adaption to seasonal and geographical differences in nutrient composition. Anim Prod Sci. https://doi.org/10.1071/AN19376

König A, Hudler M, Dahl S-A, Bolduan C, Brugger D, Windisch W (2020) Response of roe deer (Capreolus capreolus) to seasonal and local changes in dietary energy content and quality. Anim Prod Sci. https://doi.org/10.1071/AN19375

Rahnenführer F (2022) Rehernährung in typischen bayerischen Habitattypen. Vergleich von Angebot und Aufnahme der gegebenen Äsung. Technical University of Munich, Freising

König A, Scheingraber M, Mitschke J (2016) Energiegehalt und Qualität der Nahrung von Rehen (Capreolus capreolus) im Jahresverlauf in zwei unterschiedlich geprägten Habitaten. Forstliche Forschungsberichte. Vol. 215. Zentrum Wald-Forst-Holz, Freising

Owens FN, Basalan M (2016) Ruminal Fermentation. In: Millen DD, De Beni Arrigoni M, Lauritano Pacheco RD (eds) Rumenology. Springer International Publishing, Switzerland, pp 63–102

Krause DO, Denman SE, Mackie RI, Morrison M, Rae AL, Attwood GT, McSweeney CS (2003) Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiol Rev 27(5):663–693. https://doi.org/10.1016/s0168-6445(03)00072-x

Dehority BA (2003) Rumen Microbiology. Nottingham University Press, Nottingham

Anke M, Dittrich G, Groppel B, Schäfer U, Müller R, Hoppe C (2007) Zusammensetzung und Aufnahme von Winteräsung durch Reh-, Muffel-, Dam- und Rotwild. In: Stubbe M (ed) Beiträge zur Jagd- und Wildforschung. Gesellschaft für Wildtier- und Jagdforschung e.V., Halle, pp 379–398

Hofmann RR (1989) Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestives system. Oecologia 78(4):443–457. https://doi.org/10.1007/BF00378733

Bubenik A, Lochman J (1956) Futterverbrauch und Tagesrhythmus der Futteraufnahme bei Reh-und Rotwild. Z Jagdwiss 2:112–118

Hofmann RR (1982) Die Verdauungsorgane des Rehes und ihre Anpassung an die besondere Ernährungsweise. In: Hofmann RR (ed) Wildbiologische Informationen für den Jäger. Ferdinand Enke Verlag, Stuttgart, pp 103–126

Pérez-Barbería FJ, Elston DA, Gordon IJ, Illius AW (2004) The evolution of phylogenetic differences in the efficiency of digestion in ruminants. Proc Biol Sci 271(1543):1081–1090. https://doi.org/10.1098/rspb.2004.2714

Belanche A, Doreau M, Edwards JE, Moorby JM, Pinloche E, Newbold CJ (2012) Shifts in the rumen microbiota due to the type of carbohydrate and level of protein ingested by dairy cattle are associated with changes in rumen fermentation. J Nutr 142(9):1684–1692. https://doi.org/10.3945/jn.112.159574

Snelling TJ et al (2019) Temporal stability of the rumen microbiota in beef cattle, and response to diet and supplements. Animal Microbiome 1(1):16. https://doi.org/10.1186/s42523-019-0018-y

Seddik H, Xu L, Wang Y, Mao SY (2019) A rapid shift to high-grain diet results in dynamic changes in rumen epimural microbiome in sheep. Animal 13(8):1614–1622. https://doi.org/10.1017/S1751731118003269

Ishaq SL, Wright A-DG (2015) Wild Ruminants. In: Puniya AK, Singh R, Kamra DN (eds) Rumen microbiology: from evolution to revolution. Springer, India, pp 37–46

Ricci S, Sandfort R, Pinior B, Mann E, Wetzels SU, Stalder G (2019) Impact of supplemental winter feeding on ruminal microbiota of roe deer Capreolus capreolus. Wildl Biol 2019(1):1–11. https://doi.org/10.2981/wlb.00572

Mitchell B (1967) Growth layers in dental cement for determining the age of roe deer (Cervus elaphus L.). J Anim Ecol 36(2):279–293 https://doi.org/10.2307/2912

VDLUFA (2012) VDLUFA-methods book 3: the chemical analysis of feedstuffs. VDLUFA-Verlag, Darmstadt, Germany

Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet journal 17(1):3. https://doi.org/10.14806/ej.17.1.200

Kaewtapee C et al (2017) Effect of Bacillus subtilis and Bacillus licheniformis supplementation in diets with low- and high-protein content on ileal crude protein and amino acid digestibility and intestinal microbiota composition of growing pigs. J Anim Sci Biotechnol 8(1):37. https://doi.org/10.1186/s40104-017-0168-2

Bolyen E et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37(8):852–857. https://doi.org/10.1038/s41587-019-0209-9

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13(7):581–583. https://doi.org/10.1038/nmeth.3869

Quast C et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219

Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780. https://doi.org/10.1093/molbev/mst010

Price MN, Dehal PS, Arkin AP (2010) FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 5(3):e9490. https://doi.org/10.1371/journal.pone.0009490

R Core Team Ro (2013) R: A language and environment for statistical computing

McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8(4):e61217. https://doi.org/10.1371/journal.pone.0061217

Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14(6):927–930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x

Wickham H (2016) ggplot2: elegant graphics for data analysis. In: Wickham H (ed). Springer International Publishing, Cham

Conway JR, Lex A, Gehlenborg N (2017) UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics. 33(18):2938–2940

Mallick H et al (2021) Multivariable association discovery in population-scale meta-omics studies. PLoS Comput Biol 17(11):e1009442

Henderson G, Cox F, Ganesh S, Jonker A, Young W, Collaborators GRC, Janssen PH (2015) Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep 5:1–13. https://doi.org/10.1038/srep14567

Ostbye K, Wilson R, Rudi K (2016) Rumen microbiota for wild boreal cervids living in the same habitat. FEMS Microbiol Lett 363(20):1–6. https://doi.org/10.1093/femsle/fnw233

Wilson R, Ostbye K, Angell IL, Rudi K (2019) Association between diet and rumen microbiota in wild roe deer. FEMS Microbiol Lett 366(6):1–5. https://doi.org/10.1093/femsle/fnz060

Miltko R, Kowalik B, Majewska MP, Kedzierska A, McEwan NR, Belzecki G (2020) The effect of protozoa on the bacterial composition and hydrolytic activity of the roe deer rumen. Animals (Basel) 10(3). https://doi.org/10.3390/ani10030467

Li Z et al (2014) Bacteria and methanogens differ along the gastrointestinal tract of Chinese roe deer (Capreolus pygargus). PLoS One:1–20. https://doi.org/10.1371/journal.pone.0114513

Menke S, Heurich M, Henrich M, Wilhelm K, Sommer S (2019) Impact of winter enclosures on the gut bacterial microbiota of red deer in the Bavarian Forest National Park. Wildl Biol 2019(1). https://doi.org/10.2981/wlb.00503

Pope PB et al (2012) Metagenomics of the Svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PLoS One 7(6):e38571. https://doi.org/10.1371/journal.pone.0038571

Sundset MA, Praesteng KE, Cann IKO, Mathiesen SD, Mackie RI (2007) Novel rumen bacterial diversity in two geographically separated sub-species of reindeer. Microb Ecol 54:424–438. https://doi.org/10.1007/s00248-007-9254-x

Ishaq SL, Wright A-D (2014) High-throughput DNA sequencing of the ruminal bacteria from moose (Alces alces) in Vermont, Alaska, and Norway. Microb Ecol 68:185–195. https://doi.org/10.1007/s00248-014-0399-0

Laishev KA, Ilina LA, Filippova VA, Dunyashev TP, Laptev GY, Abakumov EV (2020) Rumen bacterial community of young and adult of reindeer (Rangifer tarandus) from Yamalo-Nenets Autonomous District of Russia. Open Agric 5:10–20. https://doi.org/10.1515/opag-2020-0001

Salgado-Flores A, Hagen LH, Ishaq SL, Zamanzadeh M, Wright A-D, Pope PB, Sundset MA (2016) Rumen and cecum microbiomes in reindeer (Rangifer tarandus tarandus) are changed in response to a lichen diet and may affect enteric methane emissions. PLoS One. https://doi.org/10.1371/journal.pone.0155213

Bergmann GT, Craine JM, Robeson II MS, Fierer N (2015) Seasonal shifts in diet and gut microbiota of the American bison (Bison bison). PLoS One. https://doi.org/10.1371/journal.pone.0142409

Couch CE et al (2021) Effects of supplemental feeding on the fecal bacterial communities of Rocky Mountain elk in the Greater Yellowstone Ecosystem. PLoS One. https://doi.org/10.1371/journal.pone.0249521

Guan Y, Yang H, Han S, Feng L, Wang T, Ge J (2017) Comparison of the gut microbiota composition between wild and captive sika deer (Cervus nippon hortulorum) from feces by high-throughput sequencing. AMB Express 7(212):1–13. https://doi.org/10.1186/s13568-017-0517-8

Li ZP et al (2013) Molecular diversity of rumen bacterial communities from tannin-rich and fiber-rich forage fed domestic Sika deer (Cervus nippon) in China. BMC Microbiol 13:1–12. https://doi.org/10.1186/1471-2180-13-151

Li Z, Wright A-DG, Liu H, Fan Z, Yang F, Zhang Z, Li G (2015) Response of the Rumen Microbiota of Sika Deer (Cervus nippon) Fed Different Concentrations of Tannin Rich Plants. PLoS One. https://doi.org/10.1371/journal.pone.012348

Minich D et al (2021) Alterations in gut microbiota linked to provenance, sex, and chronic wasting disease in white-tailed deer (Odocoileus virginianus). Sci Rep 11(13218):1–12. https://doi.org/10.1038/s41598-021-89896-9

Ichimura Y et al (2004) Rumen microbes and fermentation of wild sika deer on the Shiretoko peninsula of Hokkaido Island, Japan. Ecol Res 19:389–395. https://doi.org/10.1111/j.1440-1703.2004.00649.x

Delgado ML et al (2017) Intestinal microbial community dynamics of white-tailed deer (Odocoileus virginianus) in an agroecosystem. Microb Ecol 74:496–506. https://doi.org/10.1007/s00248-017-0961-7

Esser W (1958) Beitrag zur Untersuchung der Äsung des Rehwildes. Z Jagdwiss 4(1):1–40

Klötzli F (1965) Qualität und Quantität der Rehäsung. Eidgenössische Technische Hochschule Zürich, Zürich

Li B et al (2022) Rumen microbiota of indigenous and introduced ruminants and their adaptation to the Qinghai–Tibetan plateau. Front Microbiol 13:10.3389%2Ffmicb.2022.1027138

Morotomi M, Nagai F, Watanabe Y (2012) Description of Christensenella minuta gen. nov., sp. nov., isolated from human faeces, which forms a distinct branch in the order Clostridiales, and proposal of Christensenellaceae fam. nov. Int J Syst Evol Microbiol 62(1):144–149. https://doi.org/10.1099/ijs.0.026989-0

Biddle A, Stewart L, Blanchard J, Leschine S (2013) Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities. Diversity. 5:627–640. https://doi.org/10.3390/d5030627

Rodríguez-Daza M-C et al (2020) Berry polyphenols and fibers modulate distinct microbial metabolic functions and gut microbiota enterotype-like clustering in obese mice. Front Microbiol 11. https://doi.org/10.3389/fmicb.2020.02032

Wang K et al (2022) Characterization of the microbial communities along the gastrointestinal tract in crossbred cattle. Animals. 12(825):1–12. https://doi.org/10.3390/ani12070825

Purushe J et al (2010) Comparative genome analysis of Prevotella ruminicola and Prevotella bryantii: insights into their environmental niche. Microb Ecol 60:721–729. https://doi.org/10.1007/s00248-010-9692-8

Shi J et al (2020) High-meat-protein high-fat diet induced dysbiosis of gut microbiota and tryptophan metabolism in Wistar rats. J Agric Food Chem 68(23):6333–6346. https://doi.org/10.1021/acs.jafc.0c00245

Yildirim E et al (2021) The structure and functional profile of ruminal microbiota in young and adult reindeers (Rangifer tarandus) consuming natural winter-spring and summer-autumn seasonal diets. PeerJ. 9:e12389. https://doi.org/10.7717/peerj.12389

Mu C, Zhang L, He X, Smidt H, Zhu W (2017) Dietary fibres modulate the composition and activity of butyrate-producing bacteria in the large intestine of suckling piglets. Antonie Van Leeuwenhoek 110(5):687–696. https://doi.org/10.1007/s10482-017-0836-4

Hao Y et al (2020) Effects of paper mulberry silage on the milk production, apparent digestibility, antioxidant capacity, and fecal bacteria composition in Holstein dairy cows. Animals. 10(7):1152

Lohr F (2015) Universitätsforstamt Sailershausen Operat. Bayerische Forstschule & Bayerische Technikerschule für Waldwirtschaft Lohr a.Main: Lohr a. Main

Schwartz E, Friedrich B (2001) A physical map of the megaplasmid pHG1, one of three genomic replicons in Ralstonia eutropha H16. FEMS Microbiol Lett 201:213–219. https://doi.org/10.1111/j.1574-6968.2001.tb10759.x

Chakraborty P, Gibbons W, Muthukumarappan K (2009) Conversion of volatile fatty acids into polyhydroxyalkanoate by Ralstonia eutropha. J Appl Microbiol 106:1996–2005. https://doi.org/10.1111/j.1365-2672.2009.04158.x

Dai Y et al (2016) The composition, localization and function of low-temperature-adapted microbial communities involved in methanogenic degradations of cellulose and chitin from Qinghai–Tibetan Plateau wetland soils. J Appl Microbiol 121(1):163–176. https://doi.org/10.1111/jam.13164

Bayerische Staatsforsten FR (2013) Naturschutzkonzept für den Forstbetrieb Rothenbuch. Bayerische Staatsforsten Rothenbuch, Deutschland

Bayerische Staatsforsten FH (2014) Naturschutzkonzept für den Forstbetrieb Heigenbrücken. Bayerische Staatsforsten: Heigenbrücken, Deutschland

Zhao J, Shao T, Chen S, Tao X, Li J (2021) Characterization and identification of cellulase-producing Enterococcus species isolated from Tibetan yak (Bos grunniens) rumen and their application in various forage silages. J Appl Microbiol 131(3):1102–1112. https://doi.org/10.1111/jam.15014

Kraatz M, Wallace RJ, Svensson L (2011) Olsenella umbonata sp. nov., a microaerotolerant anaerobic lactic acid bacterium from the sheep rumen and pig jejunum, and emended descriptions of Olsenella, Olsenella uli and Olsenella profusa. Int J Syst Evol Microbiol 61:795–803. https://doi.org/10.1099/ijs.0.022954-0

Guo X, Xu D, Li F, Bai J, Su R (2023) Current approaches on the roles of lactic acid bacteria in crop silage. Microb Biotechnol 16(1):67–87. https://doi.org/10.1111/1751-7915.14184

Bayerische Staatsforsten FR (2015) Naturschutzkonzept für den Forstbetrieb Roding. Bayerische Staatsforsten Roding, Deutschland

Bayerische Staatsforsten FB (2015) Regionales Naturschutzkonzept für den Forstbetrieb Burglengenfeld. Bayerische Staatsforsten Burglengenfeld, Deutschland

Mosoni P, Besle J-M, Toillon S, Jouany J-P (1994) Transformations of (C14-lignin) cell walls of wheat by rumen microorganisms. J Sci Food Agric 64:379–387. https://doi.org/10.1002/jsfa.2740640321

Bayerische Staatsforsten FM (2016) Naturschutzkonzept für den Forstbetrieb München. Bayerische Staatsforsten München, Deutschland

Wei Z, Xie X, Xue M, Valencak TG, Liu J, Sun H (2021) The effects of non-fiber carbohydrate content and forage type on rumen microbiome of dairy cows. Animals. 11(12):3519

Kopečný J, Zorec M, Mrázek J, Kobayashi Y, Marinšek-Logar R (2003) Butyrivibrio hungatei sp. nov. and Pseudobutyrivibrio xylanivorans sp. nov., butyrate-producing bacteria from the rumen. Int J Syst Evol Microbiol 53(1):201–209. https://doi.org/10.1099/ijs.0.02345-0

Cotta MA, Hespell RB (1986) Proteolytic activity of the ruminal bacterium Butyrivibrio fibrisolvens. Appl Environ Microbiol 52(1):51–58. https://doi.org/10.1128/aem.52.1.51-58.1986

Bayerische Staatsforsten FS (2014) Naturschutzkonzept für den Forstbetrieb Sonthofen. Bayerische Staastsforsten, Sonthofen

Bayerische Staatsforsten FR (2015) Naturschutzkonzept Forstbetrieb Ruhpolding. Bayerische Staatsforsten, Ruhpolding, Deutschland

Basu A, Lyons TJ (2012) Strawberries, blueberries, and cranberries in the metabolic syndrome: clinical perspectives. J Agric Food Chem 60(23):5687–5692. https://doi.org/10.1021/jf203488k

König A, Dahl S-A, Windisch W (2023) Energy intake and nutritional balance of roe deer (Capreolus capreolus) in special Bavarian landscapes in southern Germany. Anim Prod Sci. https://doi.org/10.1071/AN23034