Microbiome Datasets Are Compositional: And This Is Not Optional
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aitchison, 1983, Principal component analysis of compositional data, Biometrika, 70, 57, 10.1093/biomet/70.1.57
Aitchison, 2000, Logratio analysis and compositional distance, Math. Geol., 32, 271, 10.1023/A:1007529726302
Aitchison, 2002, Biplots of compositional data, J. Roy. Stat. Soc. Ser. C, 51, 375, 10.1111/1467-9876.00275
Anders, 2010, Differential expression analysis for sequence count data, Genome Biol., 11, R106, 10.1186/gb-2010-11-10-r106
Bian, 2017, The gut microbiota of healthy aged chinese is similar to that of the healthy young, mSphere, 2, e00327, 10.1128/mSphere.00327-17
Erb, 2016, How should we measure proportionality on relative gene expression data?, Theory Biosci., 135, 21, 10.1007/s12064-015-0220-8
Fernandes, 2013, ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-seq, PLoS ONE, 8, e67019, 10.1371/journal.pone.0067019
Fernandes, 2014, Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis, Microbiome, 2, 15.1, 10.1186/2049-2618-2-15
Friedman, 2012, Inferring correlation networks from genomic survey data, PLoS Comput. Biol., 8, e1002687, 10.1371/journal.pcbi.1002687
Gloor, , Compositional uncertainty should not be ignored in high-throughput sequencing data analysis, Aust. J. Stat., 45, 73, 10.17713/ajs.v45i4.122
Gloor, 2016, Compositional analysis: a valid approach to analyze microbiome high-throughput sequencing data, Can. J. Microbiol., 62, 692, 10.1139/cjm-2015-0821
Gloor, , It's all relative: analyzing microbiome data as compositions, Ann. Epidemiol., 26, 322, 10.1016/j.annepidem.2016.03.003
Gorvitovskaia, 2016, Interpreting prevotella and bacteroides as biomarkers of diet and lifestyle, Microbiome, 4, 15, 10.1186/s40168-016-0160-7
Hawinkel, 2017, A broken promise: microbiome differential abundance methods do not control the false discovery rate, Brief. Bioinf., bbx104, 10.1093/bib/bbx104
Kurtz, 2015, Sparse and compositionally robust inference of microbial ecological networks, PLoS Comput. Biol., 11, e1004226, 10.1371/journal.pcbi.1004226
Lovell, 2011, Proportions, percentages, ppm: do the molecular biosciences treat compositional data right, Compositional Data Analysis: Theory and Applications, 193, 10.1002/9781119976462.ch14
Lovell, 2015, Proportionality: a valid alternative to correlation for relative data, PLoS Comput. Biol., 11, e1004075, 10.1371/journal.pcbi.1004075
Lozupone, 2011, Unifrac: an effective distance metric for microbial community comparison, ISME J., 5, 169, 10.1038/ismej.2010.133
Macklaim, 2013, Comparative meta-RNA-seq of the vaginal microbiota and differential expression by Lactobacillus iners in health and dysbiosis, Microbiome, 1, 15, 10.1186/2049-2618-1-12
Mandal, 2015, Analysis of composition of microbiomes: a novel method for studying microbial composition, Microb. Ecol. Health Dis., 26, 27663, 10.3402/mehd.v26.27663
Martín-Fernández, 1998, Measures of difference for compositional data and hierarchical clustering methods, Proc. IAMG, 98, 526
McMillan, 2015, A multi-platform metabolomics approach identifies highly specific biomarkers of bacterial diversity in the vagina of pregnant and non-pregnant women, Sci. Rep., 5, 14174, 10.1038/srep14174
McMurdie, 2013, phyloseq: an r package for reproducible interactive analysis and graphics of microbiome census data, PLoS ONE, 8, e61217, 10.1371/journal.pone.0061217
McMurdie, 2014, Waste not, want not: why rarefying microbiome data is inadmissible, PLoS Comput. Biol., 10, e1003531, 10.1371/journal.pcbi.1003531
McMurrough, 2014, Control of catalytic efficiency by a coevolving network of catalytic and noncatalytic residues, Proc. Natl. Acad. Sci. U.S.A., 111, E2376, 10.1073/pnas.1322352111
Morton, 2017, Uncovering the horseshoe effect in microbial analyses, mSystems, 2, e00166, 10.1128/mSystems.00166-16
Ortego, 2013, Spurious copulas, Proceedings of the 5th Workshop on Compositional Data Analysis, CoDaWork 2013
Palarea-Albaladejo, 2015, zCompositions — R package for multivariate imputation of left-censored data under a compositional approach, Chemometr. Intel. Lab. Syst., 143, 85, 10.1016/j.chemolab.2015.02.019
Pearson, 1897, Mathematical contributions to the theory of evolution. – on a form of spurious correlation which may arise when indices are used in the measurement of organs, Proc. Roy. Soc. Lond., 60, 489, 10.1098/rspl.1896.0076
Quinn, 2017, propr: An R-package for identifying proportionally abundant features using compositional data analysis, bioRxiv, 10.1101/104935
Robinson, 2016, Intricacies of assessing the human microbiome in epidemiologic studies, Ann. Epidemiol., 26, 311, 10.1016/j.annepidem.2016.04.005
Robinson, 2010, A scaling normalization method for differential expression analysis of RNA-seq data, Genome Biol., 11, R25.1, 10.1186/gb-2010-11-3-r25
Shaffer, 1981, Minimum population sizes for species conservation, BioScience, 31, 131, 10.2307/1308256
Silverman, 2017, A phylogenetic transform enhances analysis of compositional microbiota data, Elife, 6, 21887, 10.7554/eLife.21887
Thorsen, 2016, Large-scale benchmarking reveals false discoveries and count transformation sensitivity in 16S rRNA gene amplicon data analysis methods used in microbiome studies, Microbiome, 4, 62, 10.1186/s40168-016-0208-8
Tsilimigras, 2016, Compositional data analysis of the microbiome: fundamentals, tools, and challenges, Ann. Epidemiol., 26, 330, 10.1016/j.annepidem.2016.03.002
Weiss, 2016, Correlation detection strategies in microbial data sets vary widely in sensitivity and precision, ISME J., 10, 1669, 10.1038/ismej.2015.235
Weiss, 2017, Normalization and microbial differential abundance strategies depend upon data characteristics, Microbiome, 5, 27, 10.1186/s40168-017-0237-y