Microbiologically influenced corrosion and current mitigation strategies: A state of the art review

International Biodeterioration & Biodegradation - Tập 137 - Trang 42-58 - 2019
Ru Jia1, Tuba Unsal1, Dake Xu2, Yassir Lekbach2, Tingyue Gu1
1Department of Chemical and Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, OH 45701, USA
2Corrosion and Protection Division, Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, 110819, China

Tài liệu tham khảo

Abdolahi, 2015, Localised corrosion of mild steel in presence of Pseudomonas aeruginosa biofilm, Corrosion Eng. Sci. Technol., 50, 538, 10.1179/1743278215Y.0000000003 Abdoli, 2016, Distinctive colonization of Bacillus sp. bacteria and the influence of the bacterial biofilm on electrochemical behaviors of aluminum coatings, Colloids Surfaces B Biointerfaces, 145, 688, 10.1016/j.colsurfb.2016.05.075 Adams, 2008, Transcriptome: connecting the genome to gene function, Nat. Educ., 1, 195 Ahmadkhaniha, 2016, Microstructural modification of pure Mg for improving mechanical and biocorrosion properties, J. Mech. Behav. Biomed. Mater., 61, 360, 10.1016/j.jmbbm.2016.04.015 Akanda, 2018, Current review-The rise of bacteriophage as a unique therapeutic platform in treating peri-prosthetic joint infections, J. Orthop. Res., 36, 1051 Aktas, 2017, Anaerobic hydrocarbon biodegradation and biocorrosion of carbon steel in marine environments: the impact of different ultra low sulfur diesels and bioaugmentation, Int. Biodeterior. Biodegrad., 118, 45, 10.1016/j.ibiod.2016.12.013 Alakomi, 2006, Weakening effect of cell permeabilizers on gram-negative bacteria causing biodeterioration, Appl. Environ. Microbiol., 72, 4695, 10.1128/AEM.00142-06 Aliashkevich, 2018, New insights into the mechanisms and biological roles of D-amino acids in complex eco-systems, Front. Microbiol., 9, 683, 10.3389/fmicb.2018.00683 Amann, 1995, Phylogenetic identification and in situ detection of individual microbial cells without cultivation, Microbiol. Rev., 59, 143, 10.1128/MMBR.59.1.143-169.1995 Amara, 2011, Macromolecular inhibition of quorum sensing: enzymes, antibodies, and beyond, Chem. Rev., 111, 195, 10.1021/cr100101c Ashassi-Sorkhabi, 2012, The effect of Pseudoxanthomonas sp. as manganese oxidizing bacterium on the corrosion behavior of carbon steel, Mater. Sci. Eng. C, 32, 303, 10.1016/j.msec.2011.10.033 ASTM G1-03(2017)e1, 2017 Bang, 2015, Archaea associated with human surfaces: not to be underestimated, FEMS Microbiol. Rev., 39, 631, 10.1093/femsre/fuv010 Barton, 1995, Characteristics and activities of sulfate-reducing bacteria, 1 Bautista, 2016, Assessment of biocides and ultrasound treatment to avoid bacterial growth in diesel fuel, Fuel Process. Technol., 152, 56, 10.1016/j.fuproc.2016.06.002 Beeder, 1994, Archaeoglobus fulgidus isolated from hot North Sea oil field waters, Appl. Environ. Microbiol., 60, 1227, 10.1128/AEM.60.4.1227-1231.1994 Bereket, 2012, Update on bacterial nosocomial infections, Eur. Rev. Med. Pharmacol. Sci., 16, 1039 Bernardez, 2015, Improved method for enumerating sulfate-reducing bacteria using optical density, MethodsX, 2, 249, 10.1016/j.mex.2015.04.006 Bhargava, 2010, Quorum sensing in Acinetobacter : an emerging pathogen, Crit. Rev. Microbiol., 36, 349, 10.3109/1040841X.2010.512269 Bhattacharjee, 2015, Bacteriophage therapy for membrane biofouling in membrane bioreactors and antibiotic‐resistant bacterial biofilms, Biotechnol. Bioeng., 112, 1644, 10.1002/bit.25574 Bonifay, 2017, Metabolomic and metagenomic analysis of two crude oil production pipelines experiencing differential rates of corrosion, Front. Microbiol., 8, 99, 10.3389/fmicb.2017.00099 Boopathy, 1991, Effect of pH on anaerobic mild steel corrosion by methanogenic bacteria, Appl. Environ. Microbiol., 57, 2104, 10.1128/AEM.57.7.2104-2108.1991 2006 Cava, 2011, Emerging knowledge of regulatory roles of D-amino acids in bacteria, Cell. Mol. Life Sci., 68, 817, 10.1007/s00018-010-0571-8 Chakraborty, 2017, Application of spectroscopic techniques for monitoring microbial diversity and bioremediation, Appl. Spectrosc. Rev., 52, 1, 10.1080/05704928.2016.1199028 Chen, 2015, Method for fast quantification of pitting using 3D surface parameters generated with infinite focus microscope, Corrosion, 71, 1184, 10.5006/1556 Chen, 2010, Kinetics of corrosion film growth on copper in neutral chloride solutions containing small concentrations of sulfide, J. Electrochem. Soc., 157, C338, 10.1149/1.3478570 Chin, 2008, Quantifying expression of a dissimilatory (bi)sulfite reductase gene in petroleum-contaminated marine harbor sediments, Microb. Ecol., 55, 489, 10.1007/s00248-007-9294-2 Choo, 2006, Inhibition of bacterial quorum sensing by vanilla extract, Lett. Appl. Microbiol., 42, 637 Christiaen, 2014, Bacteria that inhibit quorum sensing decrease biofilm formation and virulence in Pseudomonas aeruginosa PAO1, Pathog. Dis., 70, 271, 10.1111/2049-632X.12124 Chugani, 2007, The influence of human respiratory epithelia on Pseudomonas aeruginosa gene expression, Microb. Pathog., 42, 29, 10.1016/j.micpath.2006.10.004 Clarridge, 2004, Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases, Clin. Microbiol. Rev., 17, 840, 10.1128/CMR.17.4.840-862.2004 Cojocaru, 2016, EIS study on biocorrosion of some steels and copper in Czapek Dox medium containing Aspergillus niger fungus, Rev. Chim., 67, 1264 Connelly, 2017, Antimicrobial and anticorrosive efficacy of inorganic nanoporous surfaces, Clean Technol. Environ. Policy, 19, 845, 10.1007/s10098-016-1272-2 2007 Cote, 2014, Corrosion of low carbon steel by microorganisms from the ‘pigging’ operation debris in water injection pipelines, Bioelectrochemistry, 97, 97, 10.1016/j.bioelechem.2013.11.001 Dai, 2016, Corrosion of aluminum alloy 2024 caused by Aspergillus niger, Int. Biodeterior. Biodegrad., 115, 1, 10.1016/j.ibiod.2016.07.009 Daniels, 1987, Bacterial methanogenesis and growth from CO2 with elemental iron as the sole source of electrons, Science, 237, 509, 10.1126/science.237.4814.509 Dannenberg, 1992, Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulfate-reducing bacteria, Arch. Microbiol., 158, 93, 10.1007/BF00245211 Davis, 1956, Symposium on petroleum microbiology, Bacteriol. Rev., 20, 261, 10.1128/MMBR.20.4.261-264.1956 de Mello, 2017, Fungal biofilm – a real obstacle against an efficient therapy: lessons from Candida, Curr. Top. Med. Chem., 17, 1987, 10.2174/1568026617666170105145227 De Turris, 2014 Dierksen, 2011, Microbial corrosion of silicon nitride ceramics by sulphuric acid producing bacteria Acidithiobacillus ferrooxidans, J. Eur. Ceram. Soc., 31, 1177, 10.1016/j.jeurceramsoc.2010.12.001 Dinh, 2004, Iron corrosion by novel anaerobic microorganisms, Nature, 427, 829, 10.1038/nature02321 Dong, 2018, Severe microbiologically influenced corrosion of S32654 super austenitic stainless steel by acid producing bacterium Acidithiobacillus caldus SM-1, Bioelectrochemistry, 123, 34, 10.1016/j.bioelechem.2018.04.014 Donlan, 2002, Biofilms: microbial life on surfaces, Emerg. Infect. Dis., 8, 881, 10.3201/eid0809.020063 dos Santos, 2009, New approaches to understanding microbial diversity in wastewater, landfills and leachate treatment, Oecologia Aust., 13, 631, 10.4257/oeco.2009.1304.07 Dou, 2018, Investigation of the mechanism and characteristics of copper corrosion by sulfate reducing bacteria, Corrosion Sci., 144, 237, 10.1016/j.corsci.2018.08.055 Douterelo, 2014, Methodological approaches for studying the microbial ecology of drinking water distribution systems, Water Res., 65, 134, 10.1016/j.watres.2014.07.008 Downward, 1997 Duncan, 2009, Biocorrosive thermophilic microbial communities in Alaskan North Slope oil facilities, Environ. Sci. Technol., 43, 7977, 10.1021/es9013932 Eckert, 2018, Advances in the application of molecular microbiological methods in the oil and gas industry and links to microbiologically influenced corrosion, Int. Biodeterior. Biodegrad., 126, 169, 10.1016/j.ibiod.2016.11.019 Elumalai, 2017, Influence of thermophilic bacteria on corrosion of carbon steel in hyper chloride environment, Int. J. Environ. Res., 11, 339, 10.1007/s41742-017-0031-5 Emerson, 1997, Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH, Appl. Environ. Microbiol., 63, 4784, 10.1128/AEM.63.12.4784-4792.1997 Enning, 2014, Corrosion of iron by sulfate-reducing bacteria: new views of an old problem, Appl. Environ. Microbiol., 80, 1226, 10.1128/AEM.02848-13 Eydal, 2009, Bacteriophage lytic to Desulfovibrio aespoeensis isolated from deep groundwater, ISME J., 3, 1139, 10.1038/ismej.2009.66 Fagerlund, 2016, Biofilm matrix composition affects the susceptibility of food associated staphylococci to cleaning and disinfection agents, Front. Microbiol., 7, 856, 10.3389/fmicb.2016.00856 Fida, 2016, Implications of limited thermophilicity of nitrite reduction for control of sulfide production in oil reservoirs, Appl. Environ. Microbiol., 82, 4190, 10.1128/AEM.00599-16 Finnegan, 2010, Mode of action of hydrogen peroxide and other oxidizing agents: differences between liquid and gas forms, J. Antimicrob. Chemother., 65, 2108, 10.1093/jac/dkq308 Flemming, 1996, Biofouling and microbiologically influenced corrosion (MIC)-an economic and technical overview, 5 Flores, 2011, Statistical structure of host-phage interactions, Proc. Natl. Acad. Sci. Unit. States Am., 108, E288, 10.1073/pnas.1101595108 Forte Giacobone, 2011, Microbiological induced corrosion of AA 6061 nuclear alloy in highly diluted media by Bacillus cereus RE 10, Int. Biodeterior. Biodegrad., 65, 1161, 10.1016/j.ibiod.2011.08.012 Fu, 2014, Comparing two different types of anaerobic copper biocorrosion by sulfate-and nitrate-reducing bacteria, Mater. Perform., 53, 66 Gaines, 1910, Bacterial activity as a corrosion induced in the soil, J. Ind. Eng. Chem., 2, 128, 10.1021/ie50016a003 Galloway, 2012, Applications of small molecule activators and inhibitors of quorum sensing in Gram-negative bacteria, Trends Microbiol., 20, 449, 10.1016/j.tim.2012.06.003 Ganegama Arachchi, 2013, Effectiveness of phages in the decontamination of Listeria monocytogenes adhered to clean stainless steel, stainless steel coated with fish protein, and as a biofilm, J. Ind. Microbiol. Biotechnol., 40, 1105, 10.1007/s10295-013-1313-3 Geske, 2005, Small molecule inhibitors of bacterial quorum sensing and biofilm formation, J. Am. Chem. Soc., 127, 12762, 10.1021/ja0530321 Gieg, 2011, Biological souring and mitigation in oil reservoirs, Appl. Microbiol. Biotechnol., 92, 263, 10.1007/s00253-011-3542-6 Goldman, 2009, Inhibition of biofilm formation on UF membrane by use of specific bacteriophages, J. Membr. Sci., 342, 145, 10.1016/j.memsci.2009.06.036 Gonzalez, 2006, Messing with bacterial quorum sensing, Microbiol. Mol. Biol. Rev., 70, 859, 10.1128/MMBR.00002-06 Gorman, 1980, Antimicrobial activity, uses and mechanism of action of glutaraldehyde, J. Appl. Microbiol., 48, 161 Grandclément, 2016, Quorum quenching: role in nature and applied developments, FEMS Microbiol. Rev., 40, 86, 10.1093/femsre/fuv038 Greenhalgh, 2017, Antimicrobial strategies for polymeric hygienic surfaces in healthcare, Int. Biodeterior. Biodegrad., 125, 214, 10.1016/j.ibiod.2017.09.009 Gu, 2003, Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances, Int. Biodeterior. Biodegrad., 52, 69, 10.1016/S0964-8305(02)00177-4 Gu, 2012, New understandings of biocorrosion mechanisms and their classifications, J. Microb. Biochem. Technol., 4, 3, 10.4172/1948-5948.1000e107 Gu, 2014, Theoretical modeling of the possibility of acid producing bacteria causing fast pitting biocorrosion, J. Microb. Biochem. Technol., 6, 68, 10.4172/1948-5948.1000124 Gu, 2009 Gu, 2018, Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge, Bioresour. Technol., 261, 428, 10.1016/j.biortech.2018.04.033 Gu, 2019, Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria, J. Mater. Sci. Technol., 10.1016/j.jmst.2018.10.026 Gupta, 1981, Corrosion behavior of 1040 carbon steel, Corrosion, 37, 611, 10.5006/1.3577547 Gupta, 1998, Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes, Microbiol. Mol. Biol. Rev., 62, 1435, 10.1128/MMBR.62.4.1435-1491.1998 Gutiérrez, 2016, Bacteriophages as weapons against bacterial biofilms in the food industry, Front. Microbiol., 7, 825, 10.3389/fmicb.2016.00825 Hall-Stoodley, 2004, Bacterial biofilms: from the natural environment to infectious diseases, Nat. Rev. Microbiol., 2, 95, 10.1038/nrmicro821 Hamilton, 2003, Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis, Biofouling, 19, 65, 10.1080/0892701021000041078 Hammes, 2005, New method for assimilable organic carbon determination using flow-cytometric enumeration and a natural microbial consortium as inoculum, Environ. Sci. Technol., 39, 3289, 10.1021/es048277c Harbulakova, 2013, Current trends in investigation of concrete biodeterioration, Procedia Eng., 65, 346, 10.1016/j.proeng.2013.09.053 Hedrich, 2011, The iron-oxidizing proteobacteria, Microbiology, 157, 1551, 10.1099/mic.0.045344-0 Hentzer, 2003, Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors, EMBO J., 22, 3803, 10.1093/emboj/cdg366 Huang, 2018, Endogenous phenazine-1-carboxamide encoding gene PhzH regulated the extracellular electron transfer in biocorrosion of stainless steel by marine Pseudomonas aeruginosa, Electrochem. Commun., 94, 9, 10.1016/j.elecom.2018.07.019 Ilhan-Sungur, 2015, Microbiologically influenced corrosion of galvanized steel by Desulfovibrio sp. and Desulfosporosinus sp. in the presence of Ag–Cu ions, Mater. Chem. Phys., 162, 839, 10.1016/j.matchemphys.2015.07.012 Ilhan-Sungur, 2017, Isolation of a sulfide-producing bacterial consortium from cooling-tower water: evaluation of corrosive effects on galvanized steel, Anaerobe, 43, 27, 10.1016/j.anaerobe.2016.11.005 Ioannou, 2007, Action of disinfectant quaternary ammonium compounds against Staphylococcus aureus, Antimicrob. Agents Chemother., 51, 296, 10.1128/AAC.00375-06 Jacobson, 2007, Corrosion at prudhoe bay: a lesson on the line, Mater. Perform., 46, 26 Jakobsen, 2012, Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing, Antimicrob. Agents Chemother., 56, 2314, 10.1128/AAC.05919-11 Jan-Roblero, 2004, Phylogenetic characterization of a corrosive consortium isolated from a sour gas pipeline, Appl. Microbiol. Biotechnol., 64, 862, 10.1007/s00253-004-1613-7 Janssens, 2008, Brominated furanones inhibit biofilm formation by Salmonella enterica serovar Typhimurium, Appl. Environ. Microbiol., 74, 6639, 10.1128/AEM.01262-08 Jia, 2017, Enhanced biocide treatments with D-amino acid mixtures against a biofilm consortium from a water cooling tower, Front. Microbiol., 8, 1538, 10.3389/fmicb.2017.01538 Jia, 2017, Laboratory testing of enhanced biocide mitigation of an oilfield biofilm and its microbiologically influenced corrosion of carbon steel in the presence of oilfield chemicals, Int. Biodeterior. Biodegrad., 125, 116, 10.1016/j.ibiod.2017.09.006 Jia, 2017, Electrochemical testing of biocide enhancement by a mixture of D-amino acids for the prevention of a corrosive biofilm consortium on carbon steel, Ind. Eng. Chem. Res., 56, 7640, 10.1021/acs.iecr.7b01534 Jia, 2017, Mitigation of the Desulfovibrio vulgaris biofilm using alkyldimethylbenzylammonium chloride enhanced by D-amino acids, Int. Biodeterior. Biodegrad., 117, 97, 10.1016/j.ibiod.2016.12.001 Jia, 2017, Anaerobic corrosion of 304 stainless steel caused by the Pseudomonas aeruginosa biofilm, Front. Microbiol., 8, 2335, 10.3389/fmicb.2017.02335 Jia, 2017, Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm, Bioelectrochemistry, 118, 38, 10.1016/j.bioelechem.2017.06.013 Jia, 2017, Mitigation of a nitrate reducing Pseudomonas aeruginosa biofilm and anaerobic biocorrosion using ciprofloxacin enhanced by D-tyrosine, Sci. Rep., 7, 6946, 10.1038/s41598-017-07312-7 Jia, 2017, Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation, Corrosion Sci., 127, 1, 10.1016/j.corsci.2017.08.007 Jia, 2018, Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm, Corrosion Sci., 130, 1, 10.1016/j.corsci.2017.10.023 Jia, 2018, An enhanced oil recovery polymer promoted microbial growth and accelerated microbiologically influenced corrosion against carbon steel, Corrosion Sci., 139, 301, 10.1016/j.corsci.2018.05.015 Jia, 2018, Carbon steel biocorrosion at 80oC by a thermophilic sulfate reducing archaeon biofilm provides evidence for its utilization of elemental iron as electron donor through extracellular electron transfer, Corrosion Sci., 145, 47, 10.1016/j.corsci.2018.09.015 Jiang, 2017, Polyethersulfone membranes modified with D-tyrosine for biofouling mitigation: synergistic effect of surface hydrophility and anti-microbial properties, Chem. Eng. J., 311, 135, 10.1016/j.cej.2016.11.088 Johansson, 2011, Inhibition of Pseudomonas aeruginosa biofilms with a glycopeptide dendrimer containing D-amino acids, MedChemComm, 2, 418, 10.1039/c0md00270d Juzeliūnas, 2007, Microbially influenced corrosion of zinc and aluminium – two-year subjection to influence of Aspergillus niger, Corrosion Sci., 49, 4098, 10.1016/j.corsci.2007.05.004 Kahrilas, 2015, Biocides in hydraulic fracturing fluids: a critical review of their usage, mobility, degradation, and toxicity, Environ. Sci. Technol., 49, 16, 10.1021/es503724k Kalia, 2013, Quorum sensing inhibitors: an overview, Biotechnol. Adv., 31, 224, 10.1016/j.biotechadv.2012.10.004 Kalia, 2011, Quenching the quorum sensing system: potential antibacterial drug targets, Crit. Rev. Microbiol., 37, 121, 10.3109/1040841X.2010.532479 Kalia, 2014, Evolution of resistance to quorum-sensing inhibitors, Microb. Ecol., 68, 13, 10.1007/s00248-013-0316-y Kamal, 2015, Burkholderia cepacia complex Phage-Antibiotic Synergy (PAS): antibiotics stimulate lytic phage activity, Appl. Environ. Microbiol., 81, 1132, 10.1128/AEM.02850-14 Kao, 2017, D-amino acids do not inhibit Pseudomonas aeruginosa biofilm formation, Laryngoscope Investig. Otolaryngol., 2, 4, 10.1002/lio2.34 Kasman, 2002, Overcoming the phage replication threshold: a mathematical model with implications for phage therapy, J. Virol., 76, 5557, 10.1128/JVI.76.11.5557-5564.2002 King, 1971, Corrosion by the sulphate-reducing bacteria, Nature, 233, 491, 10.1038/233491a0 Kjellerup, 2005, Monitoring of microbial souring in chemically treated, produced-water biofilm systems using molecular techniques, J. Ind. Microbiol. Biotechnol., 32, 163, 10.1007/s10295-005-0222-5 Kolodkin-Gal, 2010, D-amino acids trigger biofilm disassembly, Science, 328, 627, 10.1126/science.1188628 2007 Kryachko, 2017, The role of localized acidity generation in microbially influenced corrosion, Curr. Microbiol., 74, 870, 10.1007/s00284-017-1254-6 Lade, 2014, Quorum quenching mediated approaches for control of membrane biofouling, Int. J. Biol. Sci., 10, 550, 10.7150/ijbs.9028 Lam, 2009, D-amino acids govern stationary phase cell wall remodeling in bacteria, Science, 325, 1552, 10.1126/science.1178123 Landoulsi, 2011, Review – interactions between diatoms and stainless steel: focus on biofouling and biocorrosion, Biofouling, 27, 1105, 10.1080/08927014.2011.629043 Larsen, 2010 Lee, 2017, Inactivation of biofilms on RO membranes by copper ion in combination with norspermidine, Desalination, 424, 95, 10.1016/j.desal.2017.09.034 Leiman, 2013, D-amino acids indirectly inhibit biofilm formation in Bacillus subtilis by interfering with protein synthesis, J. Bacteriol., 195, 5391, 10.1128/JB.00975-13 Lewis, 2001, Riddle of biofilm resistance, Antimicrob. Agents Chemother., 45, 999, 10.1128/AAC.45.4.999-1007.2001 Li, 2015, Extracellular electron transfer is a bottleneck in the microbiologically influenced corrosion of C1018 carbon steel by the biofilm of sulfate-reducing bacterium Desulfovibrio vulgaris, PLoS One, 10 Li, 2016, Dominance of Desulfotignum in sulfate-reducing community in high sulfate production-water of high temperature and corrosive petroleum reservoirs, Int. Biodeterior. Biodegrad., 114, 45, 10.1016/j.ibiod.2016.05.018 Li, 2016, Enhanced biocide mitigation of field biofilm consortia by a mixture of D-amino acids, Front. Microbiol., 7, 896 Li, 2018, D-phenylalanine inhibits the corrosion of Q235 carbon steel caused by Desulfovibrio sp, Int. Biodeterior. Biodegrad., 127, 178, 10.1016/j.ibiod.2017.11.027 Li, 2018, Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity, Biotechnol. Adv., 36, 1316, 10.1016/j.biotechadv.2018.04.010 Li, 2018, Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: a review, J. Mater. Sci. Technol., 34, 1713, 10.1016/j.jmst.2018.02.023 Linhardt, 2010, Twenty years of experience with corrosion failures caused by manganese oxidizing microorganisms, Mater. Corros., 61, 1034, 10.1002/maco.201005769 Little, 2014, Microbiologically influenced corrosion: an update, Int. Mater. Rev., 59, 384, 10.1179/1743280414Y.0000000035 Little, 2001 Little, 2001, Fungal influenced corrosion of post-tensioned cables, Int. Biodeterior. Biodegrad., 47, 71, 10.1016/S0964-8305(01)00039-7 Little, 2006, Diagnosing microbiologically influenced corrosion: a state-of-the-art review, Corrosion, 62, 1006, 10.5006/1.3278228 Liu, 2017, Mechanism of microbiologically influenced corrosion of X52 pipeline steel in a wet soil containing sulfate-reduced bacteria, Electrochim. Acta, 253, 368, 10.1016/j.electacta.2017.09.089 Liu, 2013, Optimizations of inhibitors compounding and applied conditions in simulated circulating cooling water system, Desalination, 313, 18, 10.1016/j.desal.2012.11.028 Liu, 2015, Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water, Corrosion Sci., 100, 484, 10.1016/j.corsci.2015.08.023 Liu, 2016, The effect of magneticfield on biomineralization and corrosion behavior of carbon steel induced by iron-oxidizing bacteria, Corrosion Sci., 102, 93, 10.1016/j.corsci.2015.09.023 Liu, 2017, The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria, Corrosion Sci., 114, 102, 10.1016/j.corsci.2016.10.025 Liu, 2017, Corrosion inhibition and anti-bacterial efficacy of benzalkonium chloride in artificial CO2-saturated oilfield produced water, Corrosion Sci., 117, 24, 10.1016/j.corsci.2017.01.006 Liu, 2018, Marine bacteria provide lasting anticorrosion activity for steel via biofilm-induced mineralization, ACS Appl. Mater. Interfaces Liu, 2018 Liu, 2018, Antimicrobial Cu-bearing 2205 duplex stainless steel against MIC by nitrate reducing Pseudomonas aeruginosa biofilm, Int. Biodeterior. Biodegrad., 132, 132, 10.1016/j.ibiod.2018.03.002 Lomakina, 2015, Bioluminescence assay for cell viability, Biochem. Mosc., 80, 701, 10.1134/S0006297915060061 López-Gutiérrez, 2004, Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR, J. Microbiol. Methods, 57, 399, 10.1016/j.mimet.2004.02.009 Lowery, 2008, An unexpected switch in the modulation of AI-2-based quorum sensing discovered through synthetic 4,5-dihydroxy-2,3-pentanedione analogues, J. Am. Chem. Soc., 130, 9200, 10.1021/ja802353j Lugauskas, 2016, Long-time corrosion of metals (steel and aluminium) and profiles of fungi on their surface in outdoor environments in Lithuania, Chemija, 27, 135 Lv, 2018, A review: microbiologically influenced corrosion and the effect of cathodic polarization on typical bacteria, Rev. Environ. Sci. Biotechnol., 17, 431, 10.1007/s11157-018-9473-2 Ly-Chatain, 2014, The factors affecting effectiveness of treatment in phages therapy, Front. Microbiol., 5, 51, 10.3389/fmicb.2014.00051 Mah, 2001, Mechanisms of biofilm resistance to antimicrobial agents, Trends Microbiol., 9, 34, 10.1016/S0966-842X(00)01913-2 Mah, 2003, A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance, Nature, 426, 306, 10.1038/nature02122 Maisetta, 2017, The semi-synthetic peptide Lin-SB056-1 in combination with EDTA exerts strong antimicrobial and antibiofilm activity against Pseudomonas aeruginosa in conditions mimicking cystic fibrosis sputum, Int. J. Mol. Sci., 18, 1994, 10.3390/ijms18091994 Manam, 2017, Study of corrosion in biocompatible metals for implants: a review, J. Alloy. Comp., 701, 698, 10.1016/j.jallcom.2017.01.196 Marchal, 2001, Effect of ferrous ion availability on growth of a corroding sulfate-reducing bacterium, Int. Biodeterior. Biodegrad., 47, 125, 10.1016/S0964-8305(01)00038-5 Marty, 2014, Identification of key factors in accelerated low water corrosion through experimental simulation of tidal conditions: influence of stimulated indigenous microbiota, Biofouling, 30, 281, 10.1080/08927014.2013.864758 McIlwaine, 2017 Miller, 2006, Legionella Prevalence in cooling towers: association with specific biocide treatments, ASHRAE Trans., 112, 700 Miyata, 2006, Manganese(IV) oxide production by Acremonium sp. strain KR21-2 and extracellular Mn(II) oxidase activity, Appl. Environ. Microbiol., 72, 6467, 10.1128/AEM.00417-06 Motlagh, 2016, Biofilm control with natural and genetically-modified phages, World J. Microbiol. Biotechnol., 32, 1, 10.1007/s11274-016-2009-4 Narenkumar, 2017, Ginger extract as green biocide to control microbial corrosion of mild steel, 3 Biotech, 7, 1 Narenkumar, 2018, Bioengineered silver nanoparticles as potent anti-corrosive inhibitor for mild steel in cooling towers, Environ. Sci. Pollut. Res., 25, 5412, 10.1007/s11356-017-0768-6 Necib, 2016, Corrosion at the carbon steel-clay borehole water and gas interfaces at 85 °C under anoxic and transient acidic conditions, Corrosion Sci., 111, 242, 10.1016/j.corsci.2016.04.039 Ning, 2015, Experimental investigation on the performance of wet cooling towers with defects in power plants, Appl. Therm. Eng., 78, 228, 10.1016/j.applthermaleng.2014.12.032 O'Toole, 2000, Biofilm formation as microbial development, Annu. Rev. Microbiol., 54, 49, 10.1146/annurev.micro.54.1.49 Oliveira, 2016, Control of microbiological corrosion on carbon steel with sodium hypochlorite and biopolymer, Int. J. Biol. Macromol., 88, 27, 10.1016/j.ijbiomac.2016.03.033 Oliveira, 2017, Synergistic antimicrobial interaction between honey and phage against Escherichia coli biofilms, Front. Microbiol., 8, 2407, 10.3389/fmicb.2017.02407 Olsson, 2003, Passive films on stainless steels-chemistry, structure and growth, Electrochim. Acta, 48, 1093, 10.1016/S0013-4686(02)00841-1 Ou, 2017, Norspermidine changes the basic structure of S. mutans biofilm, Mol. Med. Rep., 15, 210, 10.3892/mmr.2016.5979 Paczkowski, 2017, Flavonoids suppress Pseudomonas aeruginosa virulence through allosteric inhibition of quorum-sensing receptors, J. Biol. Chem., 292, 4064, 10.1074/jbc.M116.770552 Pan, 2017, Investigation of cold atmospheric plasma-activated water for the dental unit waterline system contamination and safety evaluation in vitro, Plasma Chem. Plasma Process., 37, 1091, 10.1007/s11090-017-9811-0 Parasion, 2014, Bacteriophages as an alternative strategy for fighting biofilm development, Pol. J. Microbiol., 63, 137, 10.33073/pjm-2014-019 Park, 2007, Infection control by antibody disruption of bacterial quorum sensing signaling, Chem. Biol., 14, 1119, 10.1016/j.chembiol.2007.08.013 Park, 2011, Effect of sodium bisulfite injection on the microbial community composition in a brackish-water-transporting pipeline, Appl. Environ. Microbiol., 77, 6908, 10.1128/AEM.05891-11 2004 Pearl, 2008, Nongenetic individuality in the host–phage interaction, PLoS Biol., 6, 10.1371/journal.pbio.0060120 Peck, 1993, Bioenergetic strategies of the sulfate-reducing bacteria, 41 1984 Qu, 2015, Corrosion behavior of cold rolled steel in artificial seawater in the presence of Bacillus subtilis C2, Corrosion Sci., 91, 321, 10.1016/j.corsci.2014.11.032 Qu, 2015, Effect of the fungus, Aspergillus niger, on the corrosion behaviour of AZ31B magnesium alloy in artificial seawater, Corrosion Sci., 98, 249, 10.1016/j.corsci.2015.05.038 Qu, 2016, Effects of norspermidine on Pseudomonas aeruginosa biofilm formation and eradication, MicrobiologyOpen, 5, 402, 10.1002/mbo3.338 Qu, 2017, Adsorption and corrosion behaviour of Trichoderma harzianum for AZ31B magnesium alloy in artificial seawater, Corrosion Sci., 118, 12, 10.1016/j.corsci.2017.01.005 Raad, 2003, In vitro and ex vivo activities of minocycline and EDTA against microorganisms embedded in biofilm on catheter surfaces, Antimicrob. Agents Chemother., 47, 3580, 10.1128/AAC.47.11.3580-3585.2003 Raad, 2007, Optimal antimicrobial catheter lock solution, using different combinations of minocycline, EDTA, and 25-Percent ethanol, rapidly eradicates organisms embedded in biofilm, Antimicrob. Agents Chemother., 51, 78, 10.1128/AAC.00154-06 Rahim, 2016, Susceptibility of metallic magnesium implants to bacterial biofilm infections, J. Biomed. Mater. Res. A, 104, 1489, 10.1002/jbm.a.35680 Rahman, 2011, Characterization of induced Staphylococcus aureus bacteriophage SAP-26 and its anti-biofilm activity with rifampicin, Biofouling, 27, 1087, 10.1080/08927014.2011.631169 Rajasekar, 2010, Microbial corrosion of aluminum 2024 aeronautical alloy by hydrocarbon degrading bacteria Bacillus cereus ACE4 and Serratia marcescens ACE2, Ind. Eng. Chem. Res., 49, 6054, 10.1021/ie100078u Rajasekar, 2007, Biodegradation and corrosion behavior of manganese oxidizer Bacillus cereus ACE4 in diesel transporting pipeline, Corrosion Sci., 49, 2694, 10.1016/j.corsci.2006.12.004 Ramón-Peréz, 2015, Different sensitivity levels to norspermidine on biofilm formation in clinical and commensal Staphylococcus epidermidis strains, Microb. Pathog., 79, 8, 10.1016/j.micpath.2014.12.004 Rasmussen, 2006, Quorum sensing inhibitors: a bargain of effects, Microbiology, 152, 895, 10.1099/mic.0.28601-0 Rhoads, 2017, Interactive effects of corrosion, copper, and chloramines on Legionella and mycobacteria in hot water plumbing, Environ. Sci. Technol., 51, 7065, 10.1021/acs.est.6b05616 Rocha-Estrada, 2010, The RNPP family of quorum-sensing proteins in Gram-positive bacteria, Appl. Microbiol. Biotechnol., 87, 913, 10.1007/s00253-010-2651-y Rubio, 2015, Assessment of the antifouling effect of five different treatment strategies on a seawater cooling system, Appl. Therm. Eng., 85, 124, 10.1016/j.applthermaleng.2015.03.080 Ryan, 2012, Synergistic phage-antibiotic combinations for the control of Escherichia coli biofilms in vitro, FEMS Immunol. Med. Microbiol., 65, 395, 10.1111/j.1574-695X.2012.00977.x Sadiki, 2015, The impact of Thymus vulgaris extractives on cedar wood surface energy: theoretical and experimental of Penicillium spores adhesion, Ind. Crop. Prod., 77, 1020, 10.1016/j.indcrop.2015.10.001 San, 2011, Microbial corrosion of Ni–Cu alloys by Aeromonas eucrenophila bacterium, Corrosion Sci., 53, 2216, 10.1016/j.corsci.2011.03.001 Sanchez, 2014, D-amino acids enhance the activity of antimicrobials against biofilms of clinical wound isolates of Staphylococcus aureus and Pseudomonas aeruginosa, Antimicrob. Agents Chemother., 58, 4353, 10.1128/AAC.02468-14 Sarkar, 2015, D-amino acids do not inhibit biofilm formation in Staphylococcus aureus, PLoS One, 10, 10.1371/journal.pone.0117613 Sauer, 2009, Neutral super-oxidised solutions are effective in killing P. aeruginosa biofilms, Biofouling, 25, 45, 10.1080/08927010802441412 Schowanek, 1997, Biodegradation of [S, S],[R, R] and mixed stereoisomers of ethylene diamine disuccinic acid (EDDS), a transition metal chelator, Chemosphere, 34, 2375, 10.1016/S0045-6535(97)00082-9 Schröder, 2007, Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency, Phys. Chem. Chem. Phys., 9, 2619, 10.1039/B703627M Sekar, 2012, Bacterial water quality and network hydraulic characteristics: a field study of a small, looped water distribution system using culture-independent molecular methods, J. Appl. Microbiol., 112, 1220, 10.1111/j.1365-2672.2012.05286.x Shen, 2015, Measurement of H2S in vivo and in vitro by the monobromobimane method, Methods Enzymol., 554, 31, 10.1016/bs.mie.2014.11.039 Sherar, 2013, The effect of sulfide on the aerobic corrosion of carbon steel in near-neutral pH saline solutions, Corrosion Sci., 66, 256, 10.1016/j.corsci.2012.09.027 Si, 2017, Top capping of nanosilver-loaded titania nanotubes with norspermidine-incorporated polymer for sustained anti-biofilm effects, Int. Biodeterior. Biodegrad., 123, 228, 10.1016/j.ibiod.2017.07.003 Si, 2014, Effects of D-amino acids and norspermidine on the disassembly of large, old-aged microbial aggregates, Water Res., 54, 247, 10.1016/j.watres.2014.02.007 Skovhus, 2017, Management and control of microbiologically influenced corrosion (MIC) in the oil and gas industry—overview and a North Sea case study, J. Biotechnol., 256, 31, 10.1016/j.jbiotec.2017.07.003 2017 Sowards, 2014, Corrosion of copper and steel alloys in a simulated underground storage-tank sump environment containing acid-producing bacteria, Corrosion Sci., 87, 460, 10.1016/j.corsci.2014.07.009 Starosvetsky, 2001, Pitting corrosion of carbon steel caused by iron bacteria, Int. Biodeterior. Biodegrad., 47, 79, 10.1016/S0964-8305(99)00081-5 Stetter, 1987, Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of archaebacteria, Science, 236, 822, 10.1126/science.236.4803.822 Stetter, 1993, Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs, Nature, 365, 743, 10.1038/365743a0 Struchtemeyer, 2012, A critical assessment of the efficacy of biocides used during the hydraulic fracturing process in shale natural gas wells, Int. Biodeterior. Biodegrad., 71, 15, 10.1016/j.ibiod.2012.01.013 Summer, 2011 Sun, 2016, An investigation of the antibacterial ability and cytotoxicity of a novel cu-bearing 317L stainless steel, Sci. Rep., 6, 29244, 10.1038/srep29244 Svec, 2015, How good is a PCR efficiency estimate: recommendations for precise and robust qPCR efficiency assessments, Biomol. Detect. Quantif., 3, 9, 10.1016/j.bdq.2015.01.005 Tan, 2016, In vivo surface roughness evolution of a stressed metallic implant, J. Mech. Phys. Solid., 95, 430, 10.1016/j.jmps.2016.05.025 Tan, 2015, Next-generation sequencing (NGS) for assessment of microbial water quality: current progress, challenges, and future opportunities, Front. Microbiol., 6, 1027, 10.3389/fmicb.2015.01027 Tang, 2014, Quorum quenching agents: resources for antivirulence therapy, Mar. Drugs, 12, 3245, 10.3390/md12063245 Telegdi, 1998, Microbially influenced corrosion visualized by atomic force microscopy, Appl. Phys. Mater. Sci. Process, 66, S639, 10.1007/s003390051215 Teng, 2008, Effect of biofilm on cast iron pipe corrosion in drinking water distribution system: corrosion scales characterization and microbial community structure investigation, Corrosion Sci., 50, 2816, 10.1016/j.corsci.2008.07.008 Thauer, 2007, Energy metabolism phylogenetic diversity of sulphate-reducing bacteria, 1 Thauer, 2008, Methanogenic archaea: ecologically relevant differences in energy conservation, Nat. Rev. Microbiol., 6, 579, 10.1038/nrmicro1931 Tidwell, 2015 Tidwell, 2015, Flow cytometry as a tool for oilfield biocide efficacy testing and monitoring, Int. Biodeterior. Biodegrad., 98, 26, 10.1016/j.ibiod.2014.11.010 Tripathi, 2016, Next-generation sequencing revolution through big data analytics, Front. Life Sci., 9, 119, 10.1080/21553769.2016.1178180 Tuomanen, 1986, Antibiotic tolerance among clinical isolates of bacteria, Antimicrob. Agents Chemother., 30, 521, 10.1128/AAC.30.4.521 Usher, 2014, Critical review: microbially influenced corrosion of buried carbon steel pipes, Int. Biodeterior. Biodegrad., 93, 84, 10.1016/j.ibiod.2014.05.007 Valencia-Cantero, 2014, Effects of iron-reducing bacteria on carbon steel corrosion induced by thermophilic sulfate-reducing consortia, J. Microbiol. Biotechnol., 24, 280, 10.4014/jmb.1310.10002 Vance, 2005, Reservoir souring: mechanisms and prevention, 123 Vartoukian, 2010, Strategies for culture of ‘unculturable’ bacteria, FEMS Microbiol. Lett., 309, 1 Vázquez, 2017, Csl2, a novel chimeric bacteriophage lysin to fight infections caused by Streptococcus suis, an emerging zoonotic pathogen, Sci. Rep., 7, 16506, 10.1038/s41598-017-16736-0 Venzlaff, 2013, Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria, Corrosion Sci., 66, 88, 10.1016/j.corsci.2012.09.006 Videla, 1996, Corrosion inhibition by bacteria, 121 Videla, 2002, Prevention and control of biocorrosion, Int. Biodeterior. Biodegrad., 49, 259, 10.1016/S0964-8305(02)00053-7 Videla, 2007, Biocorrosion in oil recovery systems. Prevention and protection. An update, Espec, 30, 272 Völkl, 1993, Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum, Appl. Environ. Microbiol., 59, 2918, 10.1128/AEM.59.9.2918-2926.1993 Vroom, 1999, Depth penetration and detection of pH gradients in biofilms by two-photon excitation microscopy, Appl. Environ. Microbiol., 65, 3502, 10.1128/AEM.65.8.3502-3511.1999 Walsh, 2000, Molecular mechanisms that confer antibacterial drug resistance, Nature, 406, 775, 10.1038/35021219 Wan, 2018, Corrosion effect of Bacillus cereus on X80 pipeline steel in a Beijing soil environment, Bioelectrochemistry, 121, 18, 10.1016/j.bioelechem.2017.12.011 Wang, 2017, Corrosion of carbon steel in presence of mixed deposits under stagnant seawater conditions, J. Loss Prev. Process. Ind., 45, 29, 10.1016/j.jlp.2016.11.013 2010 Wang, 2014, Corrosion of carbon steel C1010 in the presence of iron oxidizing bacteria Acidithiobacillus ferrooxidans, Corrosion Sci., 89, 250, 10.1016/j.corsci.2014.09.005 Wang, 2018, Electron transport chains in organohalide-respiring bacteria and bioremediation implications, Biotechnol. Adv., 36, 1194, 10.1016/j.biotechadv.2018.03.018 Waters, 2005, Quorum sensing: cell-to-cell communication in bacteria, Annu. Rev. Cell Dev. Biol., 21, 319, 10.1146/annurev.cellbio.21.012704.131001 Wen, 2009, A green biocide enhancer for the treatment of sulfate-reducing bacteria (SRB) biofilms on carbon steel surfaces using glutaraldehyde, Int. Biodeterior. Biodegrad., 63, 1102, 10.1016/j.ibiod.2009.09.007 Widmer, 2001, New developments in diagnosis and treatment of infection in orthopedic implants, Clin. Infect. Dis., 33, S94, 10.1086/321863 2009 Williams, 2007, Quorum sensing, communication and cross-kingdom signalling in the bacterial world, Microbiology, 153, 3923, 10.1099/mic.0.2007/012856-0 Wong, 2018, Metabolomic analysis of low and high biofilm-forming Helicobacter pylori strains, Sci. Rep., 8, 1409, 10.1038/s41598-018-19697-0 Wu, 2014, Synergistic effect of sulfate-reducing bacteria and elastic stress on corrosion of X80 steel in soil solution, Corrosion Sci., 83, 38, 10.1016/j.corsci.2014.01.017 Wu, 2015, Stress corrosion cracking of X80 steel in the presence of sulfate-reducing bacteria, J. Mater. Sci. Technol., 31, 413, 10.1016/j.jmst.2014.08.012 Wu, 2016, A small molecule norspermidine in combination with silver ion enhances dispersal and disinfection of multi-species wastewater biofilms, Appl. Microbiol. Biotechnol., 100, 5619, 10.1007/s00253-016-7394-y Wu, 2017, Enhancing sludge biodegradability and volatile fatty acid production by tetrakis hydroxymethyl phosphonium sulfate pretreatment, Bioresour. Technol., 239, 518, 10.1016/j.biortech.2017.05.016 Xia, 2015, Laboratory investigation of the microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel in the presence of an aerobic marine Pseudomonas aeruginosa biofilm, Biofouling, 31, 481, 10.1080/08927014.2015.1062089 Xu, 2014, Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm, Int. Biodeterior. Biodegrad., 91, 74, 10.1016/j.ibiod.2014.03.014 Xu, 2012, A synergistic D-tyrosine and tetrakis hydroxymethyl phosphonium sulfate biocide combination for the mitigation of an SRB biofilm, World J. Microbiol. Biotechnol., 28, 3067, 10.1007/s11274-012-1116-0 Xu, 2012, Biocide cocktail consisting of glutaraldehyde, ethylene diamine disuccinate (EDDS), and methanol for the mitigation of souring and biocorrosion, Corrosion, 68, 994, 10.5006/0605 Xu, 2013, Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis, Corrosion Sci., 77, 385, 10.1016/j.corsci.2013.07.044 Xu, 2014, D-methionine as a biofilm dispersal signaling molecule enhanced tetrakis hydroxymethyl phosphonium sulfate mitigation of Desulfovibrio vulgaris biofilm and biocorrosion pitting, Mater. Corros., 65, 837, 10.1002/maco.201206894 Xu, 2016, Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria, Bioelectrochemistry, 110, 52, 10.1016/j.bioelechem.2016.03.003 Xu, 2017, Advances in the treatment of problematic industrial biofilms, World J. Microbiol. Biotechnol., 33, 97, 10.1007/s11274-016-2203-4 Xu, 2017, Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm, Bioelectrochemistry, 113, 1, 10.1016/j.bioelechem.2016.08.001 Xu, 2019, Effects of D-Phenylalanine as a biocide enhancer of THPS against the microbiologically influenced corrosion of C1018 carbon steel, J. Mater. Sci. Technol., 35, 109, 10.1016/j.jmst.2018.09.011 Yu, 2018, d-Tyrosine loaded nanocomposite membranes for environmental-friendly, long-term biofouling control, Water Res., 130, 105, 10.1016/j.watres.2017.11.037 Zhang, 2015, Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm, Bioelectrochemistry, 101, 14, 10.1016/j.bioelechem.2014.06.010 Zhou, 2013, Recent advances in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) for wastewater treatment, bioenergy and bioproducts: MFCs and MECs for wastewater treatment, bioenergy and bioproducts, J. Chem. Technol. Biotechnol., 88, 508, 10.1002/jctb.4004 Zhou, 2018, Accelerated corrosion of 2304 duplex stainless steel by marine Pseudomonas aeruginosa biofilm, Int. Biodeterior. Biodegrad., 127, 1, 10.1016/j.ibiod.2017.11.003 Zhu, 2003, Characterization of microbial communities in gas industry pipelines, Appl. Environ. Microbiol., 69, 5354, 10.1128/AEM.69.9.5354-5363.2003 Zilm, 2017, D-amino acids reduce Enterococcus faecalis biofilms in vitro and in the presence of antimicrobials used for root canal treatment, PLoS One, 12, 10.1371/journal.pone.0170670