Microbials for the production of monoclonal antibodies and antibody fragments
Tài liệu tham khảo
Lee, 2010, Challenges in the chemical synthesis of average sized proteins: sequential vs. convergent ligation of multiple peptide fragments, Biopolymers, 94, 441, 10.1002/bip.21379
Bolivar, 2013, Shine a light on immobilized enzymes: real-time sensing in solid supported biocatalysts, Trends Biotechnol., 31, 194, 10.1016/j.tibtech.2013.01.004
Chelliapan, 2013, Removal of organic compound from pharmaceutical wastewater using advanced oxidation processes, J. Sci. Ind. Res., 72, 248
Walsh, 2012, New biopharmaceuticals: a review of new biologic drug approvals over the years, featuring highlights from 2010 and 2011
Butler, 2012, Recent advances in technology supporting biopharmaceutical production from mammalian cells, Appl. Microbiol. Biotechnol., 96, 885, 10.1007/s00253-012-4451-z
Berlec, 2013, Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells, J. Ind. Microbiol. Biotechnol., 40, 257, 10.1007/s10295-013-1235-0
de Marco, 2011, Biotechnological applications of recombinant single-domain antibody fragments, Microb. Cell Fact., 10, 44, 10.1186/1475-2859-10-44
Li, 2010, Cell culture processes for monoclonal antibody production, MAbs, 2, 466, 10.4161/mabs.2.5.12720
Ahmad, 2012, scFv antibody: principles and clinical application, Clin. Dev. Immunol., 10.1155/2012/980250
Nelson, 2010, Antibody fragments: hope and hype, MAbs, 2, 77, 10.4161/mabs.2.1.10786
Walsh, 2010, Biopharmaceutical benchmarks 2010, Nat. Biotechnol., 28, 917, 10.1038/nbt0910-917
Gorlani, 2012, Expression of VHHs in Saccharomyces cerevisiae, Methods Mol. Biol., 911, 277, 10.1007/978-1-61779-968-6_17
Chee, 2012, New and redesigned pRS plasmid shuttle vectors for genetic manipulation of Saccharomyces cerevisiae, G3 (Bethesda), 2, 515, 10.1534/g3.111.001917
Park, 2011, Application of the FLP/FRT system for conditional gene deletion in yeast Saccharomyces cerevisiae, Yeast, 28, 673, 10.1002/yea.1895
Leite, 2013, Construction of integrative plasmids suitable for genetic modification of industrial strains of Saccharomyces cerevisiae, Plasmid, 69, 114, 10.1016/j.plasmid.2012.09.004
Partow, 2010, Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae, Yeast, 27, 955, 10.1002/yea.1806
Maury, 2008, Reconstruction of a bacterial isoprenoid biosynthetic pathway in Saccharomyces cerevisiae, FEBS Lett., 582, 4032, 10.1016/j.febslet.2008.10.045
Joosten, 2003, The production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi, Microb. Cell Fact., 2, 1, 10.1186/1475-2859-2-1
Xu, 2005, Analysis of unfolded protein response during single-chain antibody expression in Saccharomyces cerevisiae reveals different roles for BiP and PDI in folding, Metab. Eng., 7, 269, 10.1016/j.ymben.2005.04.002
Hou, 2012, Engineering of vesicle trafficking improves heterologous protein secretion in Saccharomyces cerevisiae, Metab. Eng., 14, 120, 10.1016/j.ymben.2012.01.002
Idiris, 2010, Enhanced protein secretion from multiprotease-deficient fission yeast by modification of its vacuolar protein sorting pathway, Appl. Microbiol. Biotechnol., 85, 667, 10.1007/s00253-009-2151-0
Hou, 2013, Heat shock response improves heterologous protein secretion in Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 97, 3559, 10.1007/s00253-012-4596-9
Ferndahl, 2010, Increasing cell biomass in Saccharomyces cerevisiae increases recombinant protein yield: the use of a respiratory strain as a microbial cell factory, Microb. Cell Fact., 9, 47, 10.1186/1475-2859-9-47
Hamilton, 2007, Glycosylation engineering in yeast: the advent of fully humanized yeast, Curr. Opin. Biotechnol., 18, 387, 10.1016/j.copbio.2007.09.001
Chiba, 1998, Production of human compatible high mannose-type (Man5GlcNAc2) sugar chains in Saccharomyces cerevisiae, J. Biol. Chem., 273, 26298, 10.1074/jbc.273.41.26298
Mattia, A. Diversa Corporation (2006) GRAS notification concerning BD16449 – phospholipase C enzyme preparation from Pichia pastoris, http://www.accessdata.fda.gov/scripts/fcn/gras_notices/grn000204.pdf
Naatsaari, 2012, Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology, PLoS ONE, 7, e39720, 10.1371/journal.pone.0039720
Krainer, 2012, Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway, Microb. Cell Fact., 11, 22, 10.1186/1475-2859-11-22
Delic, 2013, Repressible promoters – a novel tool to generate conditional mutants in Pichia pastoris, Microb. Cell Fact., 12, 6, 10.1186/1475-2859-12-6
Ruth, 2010, Variable production windows for porcine trypsinogen employing synthetic inducible promoter variants in Pichia pastoris, Syst. Synth. Biol., 4, 181, 10.1007/s11693-010-9057-0
De Schutter, 2009, Genome sequence of the recombinant protein production host Pichia pastoris, Nat. Biotechnol., 27, 561, 10.1038/nbt.1544
Mattanovich, 2009, Open access to sequence: browsing the Pichia pastoris genome, Microb. Cell Fact., 8, 53, 10.1186/1475-2859-8-53
Sohn, 2010, Genome-scale metabolic model of methylotrophic yeast Pichia pastoris and its use for in silico analysis of heterologous protein production, Biotechnol. J., 5, 705, 10.1002/biot.201000078
Inan, 2006, Enhancement of protein secretion in Pichia pastoris by overexpression of protein disulfide isomerase, Biotechnol. Bioeng., 93, 771, 10.1002/bit.20762
Boehm, 1999, Disruption of the KEX1 gene in Pichia pastoris allows expression of full-length murine and human endostatin, Yeast, 15, 563, 10.1002/(SICI)1097-0061(199905)15:7<563::AID-YEA398>3.0.CO;2-R
Baumann, 2011, Protein trafficking, ergosterol biosynthesis and membrane physics impact recombinant protein secretion in Pichia pastoris, Microb. Cell Fact., 10, 93, 10.1186/1475-2859-10-93
Jahic, 2002, Modeling of growth and energy metabolism of Pichia pastoris producing a fusion protein, Bioprocess Biosyst. Eng., 24, 385, 10.1007/s00449-001-0274-5
Hellwig, 2001, Analysis of single-chain antibody production in Pichia pastoris using on-line methanol control in fed-batch and mixed-feed fermentations, Biotechnol. Bioeng., 74, 344, 10.1002/bit.1125
Zalai, 2012, A dynamic fed batch strategy for a Pichia pastoris mixed feed system to increase process understanding, Biotechnol. Prog., 28, 878, 10.1002/btpr.1551
Tegel, 2011, Enhancing the protein production levels in Escherichia coli with a strong promoter, FEBS J., 278, 729, 10.1111/j.1742-4658.2010.07991.x
Striedner, 2010, Plasmid-free T7-based Escherichia coli expression systems, Biotechnol. Bioeng., 105, 786
Mairhofer, 2010, Marker-free plasmids for gene therapeutic applications –Lack of antibiotic resistance gene substantially improves the manufacturing process, J. Biotechnol., 146, 130, 10.1016/j.jbiotec.2010.01.025
Khodabakhsh, 2013, Comparison of the cytoplasmic and periplasmic production of reteplase in Escherichia coli, Prep. Biochem. Biotechnol., 43, 613, 10.1080/10826068.2013.764896
Sonoda, 2011, Effects of cytoplasmic and periplasmic chaperones on secretory production of single-chain Fv antibody in Escherichia coli, J. Biosci. Bioeng., 111, 465, 10.1016/j.jbiosc.2010.12.015
Yuan, 2010, Protein transport across and into cell membranes in bacteria and archaea, Cell. Mol. Life Sci., 67, 179, 10.1007/s00018-009-0160-x
Levy, 2013, Enhancement of antibody fragment secretion into the Escherichia coli periplasm by co-expression with the peptidyl prolyl isomerase, FkpA, in the cytoplasm, J. Immunol. Methods, 394, 10, 10.1016/j.jim.2013.04.010
Huang, 2012, Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements, J. Ind. Microbiol. Biotechnol., 39, 383, 10.1007/s10295-011-1082-9
Jalalirad, 2013, Production of antibody fragment (Fab) throughout Escherichia coli fed-batch fermentation process: changes in titre, location and form of product, Electron. J. Biotechnol., 16, 10.2225/vol16-issue3-fulltext-15
Tao, 2012, Metabolic engineering for acetate control in large scale fermentation, Methods Mol. Biol., 834, 283, 10.1007/978-1-61779-483-4_18
Lara, 2008, Utility of an Escherichia coli strain engineered in the substrate uptake system for improved culture performance at high glucose and cell concentrations: an alternative to fed-batch cultures, Biotechnol. Bioeng., 99, 893, 10.1002/bit.21664
Sagmeister, 2013, Soft sensor assisted dynamic bioprocess control: efficient tools for bioprocess development, Chem. Eng. Sci., 96, 190, 10.1016/j.ces.2013.02.069
Jazini, 2011, Effect of post-induction substrate oscillation on recombinant alkaline phosphatase production expressed in Escherichia coli, J. Biosci. Bioeng., 112, 606, 10.1016/j.jbiosc.2011.08.013
Wechselberger, 2013, Model-based analysis on the extractability of information from data in dynamic fed-batch experiments, Biotechnol. Prog., 29, 285, 10.1002/btpr.1649
Fisher, 2011, Production of secretory and extracellular N-linked glycoproteins in Escherichia coli, Appl. Environ. Microbiol., 77, 871, 10.1128/AEM.01901-10
Lizak, 2011, N-Linked glycosylation of antibody fragments in Escherichia coli, Bioconjug. Chem., 22, 488, 10.1021/bc100511k
van der Valk, 2010, Optimization of chemically defined cell culture media–replacing fetal bovine serum in mammalian in vitro methods, Toxicol. In Vitro, 24, 1053, 10.1016/j.tiv.2010.03.016
Kim, 2011, Proteomic understanding of intracellular responses of recombinant Chinese hamster ovary cells cultivated in serum-free medium supplemented with hydrolysates, Appl. Microbiol. Biotechnol., 89, 1917, 10.1007/s00253-011-3106-9
Ning, 2005, Production of recombinant humanized anti-HBsAg Fab fragment from Pichia pastoris by fermentation, J. Biochem. Mol. Biol., 38, 294, 10.5483/BMBRep.2005.38.3.294
Wildt, 2005, The humanization of N-glycosylation pathways in yeast, Nat. Rev. Microbiol., 3, 119, 10.1038/nrmicro1087
Mille, 2008, Identification of a new family of genes involved in beta-1,2-mannosylation of glycans in Pichia pastoris and Candida albicans, J. Biol. Chem., 283, 9724, 10.1074/jbc.M708825200
Cregg, 1993, Recent advances in the expression of foreign genes in Pichia pastoris, Biotechnology, 11, 905, 10.1038/nbt0893-905
Choi, 2003, Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris, Proc. Natl. Acad. Sci. U.S.A., 100, 5022, 10.1073/pnas.0931263100
Nett, 2011, A combinatorial genetic library approach to target heterologous glycosylation enzymes to the endoplasmic reticulum or the Golgi apparatus of Pichia pastoris, Yeast, 28, 237, 10.1002/yea.1835
Hamilton, 2003, Production of complex human glycoproteins in yeast, Science, 301, 1244, 10.1126/science.1088166
Bernett, 2010, Engineering fully human monoclonal antibodies from murine variable regions, J. Mol. Biol., 396, 1474, 10.1016/j.jmb.2009.12.046
Callewaert, 2001, Use of HDEL-tagged Trichoderma reesei mannosyl oligosaccharide 1,2-alpha-D-mannosidase for N-glycan engineering in Pichia pastoris, FEBS Lett., 503, 173, 10.1016/S0014-5793(01)02676-X
Davidson, 2004, Functional analysis of the ALG3 gene encoding the Dol-P-Man: Man5GlcNAc2-PP-Dol mannosyltransferase enzyme of P. pastoris, Glycobiology, 14, 399, 10.1093/glycob/cwh023
Jacobs, 2009, Engineering complex-type N-glycosylation in Pichia pastoris using GlycoSwitch technology, Nat. Protoc., 4, 58, 10.1038/nprot.2008.213
Hamilton, 2006, Humanization of yeast to produce complex terminally sialylated glycoproteins, Science, 313, 1441, 10.1126/science.1130256
Hopkins, 2011, Elimination of beta-mannose glycan structures in Pichia pastoris, Glycobiology, 21, 1616, 10.1093/glycob/cwr108
Choi, 2012, Improvement of N-glycan site occupancy of therapeutic glycoproteins produced in Pichia pastoris, Appl. Microbiol. Biotechnol., 95, 671, 10.1007/s00253-012-4067-3
Ye, 2011, Optimization of a glycoengineered Pichia pastoris cultivation process for commercial antibody production, Biotechnol. Prog., 27, 1744, 10.1002/btpr.695
Campbell, 2010, Utilization of site-specific recombination for generating therapeutic protein producing cell lines, Mol. Biotechnol., 45, 199, 10.1007/s12033-010-9266-5
Kameyama, 2010, An accumulative site-specific gene integration system using Cre recombinase-mediated cassette exchange, Biotechnol. Bioeng., 105, 1106
Lai, 2013, Advances in mammalian cell line development technologies for recombinant protein production, Pharmaceuticals, 6, 579, 10.3390/ph6050579
Becker, 2010, Evaluation of a combinatorial cell engineering approach to overcome apoptotic effects in XBP-1(s) expressing cells, J. Biotechnol., 146, 198, 10.1016/j.jbiotec.2009.11.018
Pfeffer, 2012, Intracellular interactome of secreted antibody Fab fragment in Pichia pastoris reveals its routes of secretion and degradation, Appl. Microbiol. Biotechnol., 93, 2503, 10.1007/s00253-012-3933-3
Lin-Cereghino, 2013, The effect of alpha-mating factor secretion signal mutations on recombinant protein expression in Pichia pastoris, Gene, 519, 311, 10.1016/j.gene.2013.01.062
Lim, 2011, An economic comparison of three cell culture techniques, BioPharm. Int., 24, 54
Dietzsch, 2011, A fast approach to determine a fed batch feeding profile for recombinant Pichia pastoris strains, Microb. Cell Fact., 10, 85, 10.1186/1475-2859-10-85